[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む59 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む59 http://rio2016.5ch.net/test/read.cgi/math/1548454512/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
28: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/01/26(土) 07:39:48.99 ID:JfQZB3iV >>27 つづき スレ55 https://rio2016.5ch.net/test/read.cgi/math/1543319499/35 35 名前:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 投稿日:2018/11/28(水) 07:14:57.40 ID:eqSr3MTr [2/13] >>25 >参考文献の紹介 芽の参考文献、取り敢ず3つ 1) このスレの>>23 2) スレ54 https://rio2016.5ch.net/test/read.cgi/math/1540684573/552 (抜粋) http://searial.web.fc2.com/aerile_re/sou.html 層空間のイメージの紹介 (抜粋) 今回の層を使って芽の定義を書くと x=p における芽 とは p∈Xを含む開集合での連続関数の集合を、 p∈Xを含むある開集合で一致する時に同値 とみなす同値関係で割った商集合 です (引用終り) 3)(下記PDFのP25辺り) スレ54 https://rio2016.5ch.net/test/read.cgi/math/1540684573/601 (抜粋) http://www.ms.u-tokyo.ac.jp/web/htdocs/publication/documents/saito-lectures 5 斎藤 恭司 述,松本 佳彦 記:複素解析学特論 ( Classical Topics in Complex Analysis of One and Several Variables. Communicated by A. Matsuo) [2009, (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1548454512/28
29: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/01/26(土) 07:40:12.54 ID:JfQZB3iV >>28 つづき <参考文献の紹介追加> スレ55 https://rio2016.5ch.net/test/read.cgi/math/1543319499/328 328 自分:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 投稿日:2018/12/05(水) 08:14:32.01 ID:LlwR0wPB [1/4] >>326 >スレ主さあ、芽だの層だの使っても反例になってないんだわ 数学科卒落ちこぼれのピエロちゃん 下記の 「超函数の理論I 第2章 層 伊東由文 PDF」 読める?(^^ 芽と茎と層と前層の関係を抜粋してあげたよ 数日前は、これさっぱり読めなかったが、なんとなく雰囲気が掴めてきた 読めれば、反例になっていることが分るだろう まあ、世の中の 数学科院生で 分っている1割さんから見れば、 (>>89より「教科書・参考書の例題が鬼のように難しい 理系の9割が理解していない」) スレ主は、まだまだ分ってないと言われるだろうが だが、”数学科院生の分っている1割さん>>>スレ主>数学科卒落ちこぼれのピエロちゃん” かなと思う今日この頃です (^^ つづく http://rio2016.5ch.net/test/read.cgi/math/1548454512/29
838: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/03(日) 14:41:36.36 ID:BnDtX2yP >>837 つづき 一致するしっぽは、Bn=(0,ε) | ε=1/(n-1) の中に入る。 開区間の族であり、同値類はε→∞ の極限を考える必要がある ところで、{1/1,1/2,1/3,・・・,1/n,・・・→1/∞} ⊂ (0,1] と、数列は半開区間(0,1]の中に表現できる。 同値類でε→∞ の極限を考えるということは、 Bnはどんどん縮小し、 半開区間(0,1] の箱で、ほとんど当たらないということを意味する あと、無限長数列のしっぽの同値類に近い概念が、函数の層の芽だと思う。 >>26-29をご参照 これを、別の視点で見ると 有限長の数列 s = (s1,s2,s3 ,・・・,sn),s'=(s'1, s'2, s'3,・・・,s'n )∈R^n で考えると、この場合 sn=s'n であれば良いのだった。 ここで、可算無限長にするのに、s1より前に、箱を追加して無限長にすることを考える。 そうすると、しっぽの同値類は、そのまま不変で保って、可算無限長の数列を実現できる こちらの方が、可算無限長の数列のしっぽの同値類を考えるには適していると思う 上記の開区間の族 Bnを使う場合でも同じだが、 同値類の決定は、しっぽの先の極一部さえ一致していれば良い だから、しっぽの先の一致が分っても、それから後の胴体部分は、分りようが無い また、最後の箱を一つ開けると、どの同値類に属するかが分る。 だが、それが分る全てだ。 どの同値類に属するかが分っても、箱の中の数で分るものが増えるわけでなない それは、s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^Nでも同じで、 しっぽの箱を開けると、どの同値類に属するかが分る。 だが、それが分る全てだ。 どの同値類に属するかが分っても、箱の中の数で分るものが増えるわけでなないよと なお、 この視点で考えると、決定番号の概念にも誤魔化しがあって、 例えば2列で大小比較をして確率計算ができるのか?と そこに疑問符を付けた人がいた(下記) つづく http://rio2016.5ch.net/test/read.cgi/math/1548454512/838
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.036s