[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む58 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
239(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/01/16(水) 10:27:18.79 ID:xPfIBQ4x(3/3) AAS
「確率変数」 xi
定数だ
変数だ
変数は箱に入れられないのだ
そんな、初歩的な話が出て
また、それに乗せられる人たち
”確率論基礎”(>>62 京大重川先生)を、
読みましょうね
240: 132人目の素数さん [sage] 2019/01/16(水) 19:19:44.93 ID:roq3m7Ah(5/7) AAS
>>233-234
>確率変数の答え・・・
見当違いな問いには誰も答えないよw
>>237-239
>Sergiu Hart氏のPDFに記載のRemark定理は、可算無限個のnたちが満たしている
>つまり、可算無限の自然数の集合N全体の数で、成り立つことになる
R^n(nは任意の自然数)と、R^N(Nは自然数全体の集合)は違うよ
>時枝記事も成り立って、Sergiu Hart氏のPDFに記載の
>Remark定理も成り立つように両立できるのか
前者はR^N(Nは自然数全体の集合)、
後者はR^n(nは任意の自然数)
に関するものだから、両立する
>時枝記事の(無限)数列と、Sergiu Hart氏のRemark定理の
>自然数全体に渡る(有限)数列たちと両立できるのか?
> 一貫した確率計算が可能なのか?
「一貫した確率計算」という言葉が、
「無限数列と有限数列に共通する確率計算」
を表すのなら、それは不可能である
なぜなら無限数列の場合、
数列の決定番号の分布が非可測関数だから
当然、別の方法で計算する
>言い換えると、確率空間の定義から始まって、
>きちんとした理論体系のもとで、
>首尾一貫した理論構築が出来るのかということ
別の方法であるが、当然確率空間は定義されているし
実に簡単であるが理論構築出来ているので
君にも反論のしようがない
>(Ω={1,・・・,100}じゃ)飛躍がありすぎて、数学じゃない
別の方法を用いたから「飛躍」というのは安直
243: 132人目の素数さん [] 2019/01/16(水) 22:00:16.87 ID:fbvnW+87(5/9) AAS
>>239
時枝記事の数当てゲームのルールは時枝記事に書いてある。曰く
>箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
尚且つ
>”確率論基礎”(>>62 京大重川先生)を、
には書いてないw
スレ主は痴呆症なの?
245: 132人目の素数さん [] 2019/01/16(水) 22:11:53.89 ID:fbvnW+87(6/9) AAS
>239
そうか、スレ主は実数が何かわかってないんだね。
そりゃ時枝記事が理解できないのも無理は無い。
252(9): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/01/17(木) 00:34:45.79 ID:UcnpENla(1/2) AAS
>>238-239
いま、思い返せば、Sergiu Hart氏のPDF http://www.ma.huji.ac.il/hart/puzzle/choice.pdf
では、箱は使ってないね。まあ、箱なんて、数学外の単なる小道具でしかない
本質は、「確率変数」 xiだと
この”「確率変数」 xi”の定義は、重川先生のPDF(>>62)にしっかり書かれている
ちゃんと読めば分る
https://www.math.kyoto-u.ac.jp/~ichiro/lectures/2013bpr.pdf 2013年度前期 確率論基礎 講義ノート
「独立な確率変数の無限族 X1,X2,X3,…」は、時枝先生の記事の後半に出てきます
現代確率論の結論は、普通の隔離計算通りで、99/100にはならない
だから、有限長の数列も、時枝先生の記事の後半にある「独立な確率変数の無限族 X1,X2,X3,…」も、反例です
あと、非可測の場合で
選択公理を使って、ビタリ集合をちょうど真っ二つに分けたとしましょう
例えば、ビタリ集合をVとして、その元をひとつずつ取り出して、部分集合V1とV2を作る。V1とV2とに交互に入れていきます
そうすると、部分集合V1とV2との間で、交互に入れた元を対応させて、全単射が構成できる。なので、濃度はV1とV2で等しい
実数の集合をR、有理数の集合をQ、無理数の集合をPとして、P=R\Qです。ある無理数をAp∈Pとする
Apの属するR/Qの同値類が定まり、同値類の代表v∈Vが定まる
vは、V1に入るかV2に入るか、二択で、どちらに入るかは確率1/2だと。直観ではこうなる。Ω={1,2}だと
しかし、それを通常の確率論の測度を使って書くと、λ(Vk)/λ(V)=1/2 (つまり、λ(V)=1で、λ(Vk)=1/2)
(なお、測度の記号λは、下記のヴィタリ集合 wikipediaの記載を借用した)
ところで、ヴィタリ集合はそもそも非可測だから、「λ(V)=1」が不成立で、λ(Vk)/λ(V)=1/2は、言えない
この例のように、非可測集合を使うと、直観による確率1/2が非自明になる。1/2を主張するなら、別に証明が必要になる
https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88
ヴィタリ集合
(参考)
http://alg-d.com/ 壱大整域
http://alg-d.com/math/ac/ 選択公理
http://alg-d.com/math/ac/tsudoi3.pdf
第三回 関西すうがく徒のつどい「数学の諸定理と選択公理の関係」 PDF版
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.035s