[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む58 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
228(1): 132人目の素数さん [sage] 2019/01/16(水) 07:12:01.98 ID:roq3m7Ah(1/7) AAS
>223
>多項式環を使ったのは、意図があってね(^^
マウンティングだろ?それ以外ないなw
>多項式環の元の多項式の次数nは、ペアノの公理を満たす
意味不明。
有限モデルとして「n次までの多項式しか考えない」
(この場合環にならない)と決めた時点で
n+1次以降の多項式がないから、ペアノの公理に反する
>だから、多項式環によって構成された反例を、
>ペアノの公理をもって、これを排除することはできない
次数の上限を設けない多項式全体で考える
(この場合環になる)なら、時枝戦略によって
多項式の係数が0の場所を当てられる
つまり、反例はできないw
229(1): 132人目の素数さん [] 2019/01/16(水) 07:16:15.75 ID:roq3m7Ah(2/7) AAS
>>226
>ペアノ公理は免罪符にならない
とかいう以前にペアノ公理を満たせば反例はできない
>>228の通り、多項式全体の場合、時枝戦略によって
100個の場合99/100で多項式(を無限次数級数としたとき)
の係数0の位置が当てられるというのと同じこと
230: 132人目の素数さん [sage] 2019/01/16(水) 07:20:07.66 ID:roq3m7Ah(3/7) AAS
>>225
スレ主は直感だけで
「時枝記事は間違ってる!当てられるわけがない!」
とわめいてるだけなので、自分の主張の根拠を
論理的に掘り下げられないし掘り下げる気もない
なんか高尚に聞こえる言葉をちりばめて
虚仮脅かしのブラフを吐くくらいしかできない
当人はこれで読者に対してマウンティングできた
と思ってるからお目出度い
読者はスレ主を数学のスの字も分らんウスラバカ
としか思ってないがスレ主だけが気づいてない
231: 132人目の素数さん [sage] 2019/01/16(水) 07:23:11.05 ID:roq3m7Ah(4/7) AAS
大体、列だけの話で、積なんか必要ないのに
「多項式環」とか「形式的級数環」とか
持ち出すのがイタイタシイ
「有限列」「無限列」でいいではないか
「有限列」を「ある箇所から先が0の無限列」とすれば
時枝戦略を利用して、100列の場合99/100で
連続する0の箇所の位置が当てられる
240: 132人目の素数さん [sage] 2019/01/16(水) 19:19:44.93 ID:roq3m7Ah(5/7) AAS
>>233-234
>確率変数の答え・・・
見当違いな問いには誰も答えないよw
>>237-239
>Sergiu Hart氏のPDFに記載のRemark定理は、可算無限個のnたちが満たしている
>つまり、可算無限の自然数の集合N全体の数で、成り立つことになる
R^n(nは任意の自然数)と、R^N(Nは自然数全体の集合)は違うよ
>時枝記事も成り立って、Sergiu Hart氏のPDFに記載の
>Remark定理も成り立つように両立できるのか
前者はR^N(Nは自然数全体の集合)、
後者はR^n(nは任意の自然数)
に関するものだから、両立する
>時枝記事の(無限)数列と、Sergiu Hart氏のRemark定理の
>自然数全体に渡る(有限)数列たちと両立できるのか?
> 一貫した確率計算が可能なのか?
「一貫した確率計算」という言葉が、
「無限数列と有限数列に共通する確率計算」
を表すのなら、それは不可能である
なぜなら無限数列の場合、
数列の決定番号の分布が非可測関数だから
当然、別の方法で計算する
>言い換えると、確率空間の定義から始まって、
>きちんとした理論体系のもとで、
>首尾一貫した理論構築が出来るのかということ
別の方法であるが、当然確率空間は定義されているし
実に簡単であるが理論構築出来ているので
君にも反論のしようがない
>(Ω={1,・・・,100}じゃ)飛躍がありすぎて、数学じゃない
別の方法を用いたから「飛躍」というのは安直
241: 132人目の素数さん [sage] 2019/01/16(水) 19:20:55.04 ID:roq3m7Ah(6/7) AAS
有限列を
「列の終わりの次の箱から先が全部0の無限列」
とみなすと、その全体は無限列全体において
「箱の中身が全部0の無限列と
(尻尾の同値関係で)同値の列」
となる
上記の有限列において
「無限に連続する0の先頭位置」
つまり「終端位置の次の位置」を
決定番号とする
有限列100個に対して、
時枝記事の戦略が使えて
選んだ1列に対して
「無限に連続する0」の中の
ある箱を選ぶ確率が
少なくとも99/100といえる
この場合、もはや同値類は1個で
その代表元は
「箱の中身が全部0の無限列」
だから、選択公理は必要ない
もし、有限列全体でなく
「長さnの有限列全体」
と限定してしまうと、
「終端まで連続する0」
が存在しない列があるから
上手くいかなくなる
(つまり、有限列の全体と
「長さnの有限列全体」は
全然異なる性質を持つ)
242: 132人目の素数さん [sage] 2019/01/16(水) 19:21:18.39 ID:roq3m7Ah(7/7) AAS
有限列を
「列の終わりの次の箱から先が全部0の無限列」
とみなすと、ほとんど全ての箱は0である
時枝戦略はその中から0の箱を当てる方法であるから
そう考えれば当たるほうが当たり前
(ほとんどすべての箱の中身が0だから)
とも思える
尻尾の同値類を考えても
無限列についてその代表元つまり
「ほとんど全ての箱の中身が一致する列」
がとれるというわけだから、
代表元と一致する箱を選べるほうが当たり前
(ほとんどすべての箱の中身は代表元と一致するから)
とも思える
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.040s