[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む58 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
168: 132人目の素数さん [sage] 2019/01/14(月) 22:33:28.67 ID:bs/zORq6(1/7) AAS
>>77
>「mに上限がない以上
> m’=m+1として
> m’に置き換えれば、それで終わりですよ 」
m のときの有限モデルがそのまま反例になっているなら、
わざわざ m'=m+1 に置き換える必要はない
m'=m+1 に置き換えたがるということは、
m のときの有限モデルそのままでは反例になってないことを
アホ主自身が認めていることになる
では、m のときの有限モデルが反例にならないとして、
m'=m+1 に置き換えれば反例になるのか?
いや、反例にならない。なぜなら、m' のときの有限モデルが
そのまま反例になるなら、m から出発せずに、最初から
m' のときの有限モデルそのものを提示すればいいからだ
169: 132人目の素数さん [sage] 2019/01/14(月) 22:37:26.69 ID:bs/zORq6(2/7) AAS
まとめると、
m=1のときの有限モデルでは反例にならない
m=2のときの有限モデルでは反例にならない
m=3のときの有限モデルでは反例にならない
:
:
m=kのときの有限モデルでは反例にならない
m=k+1のときの有限モデルでは反例にならない
m=k+2のときの有限モデルでは反例にならない
:
:
となるので、どの有限値のmに対しても、そのときの有限モデルでは反例にならない
170(1): 132人目の素数さん [sage] 2019/01/14(月) 22:47:02.92 ID:bs/zORq6(3/7) AAS
では、m'=m+1 に置き換えることで、アホ主は何を示したつもりになっているのか?
実はアホ主は、固定されたmに対する特定の有限モデルそのものには注目していない
アホ主は、m=1,2,3,…に対応する有限モデルの「系列全体」に注目しているのであり、
その系列において m→∞ という "極限" を考えることで、時枝記事の反例が出来上がると
漠然とイメージしている
言うまでもなく、このイメージは意味不明であり、時枝記事の反例にはならない
また、m→∞ の "極限" という幻想に未だに囚われているところも呆れ返る
172(3): 132人目の素数さん [sage] 2019/01/14(月) 22:57:00.89 ID:bs/zORq6(4/7) AAS
仮に m→∞ の "極限" を考えたいなら、「確率空間の系列」の極限を扱うことになるので、
極限として得られる確率空間が本当に確率空間になっているのか証明する必要があるし、
その確率空間が本当に時枝記事の反例になっているのかも確かめる必要がある
m のときの有限モデルを (Ω_m, σ_m, P_m) として、
"極限" として得られる確率空間を(Ω, σ, P)とする
どの有限値のmに対しても、確率空間(Ω_m, σ_m, P_m)は時枝記事の反例にならないので、
反例になる可能性があるのは(Ω, σ, P)しかない
よって、アホ主は以下の問題を全てクリアしなければならない
・ Ωはどのような集合か明示せよ
・ σはどのようなσ集合体か明示せよ
・ Pはどのような確率測度か明示せよ
・ そもそもm→∞の "極限" には概収束や確率収束など色々な種類があるが、
どの意味の極限を考えているのか明示せよ
・ (Ω, σ, P)が実際に反例になっていることを証明せよ
177: 132人目の素数さん [sage] 2019/01/14(月) 23:03:34.18 ID:bs/zORq6(5/7) AAS
ところで、どのような "極限" を考えるにせよ、
それがマトモな "極限" である限り、Ωは明らかに無限集合である
つまり、時枝記事の反例になる(Ω, σ, P)においては、
Ωが無限集合になるしかないので、有限モデルを考えること自体がナンセンスである
では、なぜ有限モデルを考えていたのか?
そもそも、有限モデルを持ち出したのはアホ主である
その理由は、無限集合では都合が悪いから、という短絡的な理由である
要するに、有限モデルを考えることに正当な理由などなく、
単にアホ主にとって都合が悪いからという短絡的な理由で
有限モデルが持ち出されたにすぎない
そして、有限モデル(Ω_m, σ_m, P_m)では反例にならず、
結局はΩが無限集合でなければ反例の候補になり得ないのだった
つまり、アホ主の目論見は最初の一歩目から崩壊している
178: 132人目の素数さん [sage] 2019/01/14(月) 23:11:52.72 ID:bs/zORq6(6/7) AAS
仮に有限モデル(Ω_m, σ_m, P_m)から出発するにしても、
結局は m→∞ の "極限" を取った(Ω, σ, P)でなければ
反例の候補になりえないのだから、つまりは>>172のような
ウルサイ問題を全てクリアしなければならず、
反例を提示する手間が全く軽減されていないし、
むしろ問題が無意味に複雑化されているだけである
無論、そこにアホ主の戦略がある
つまり、>>172のようなウルサイ問題を全て棚に上げて、
(Ω, σ, P)を直視することから逃げて、
(Ω_m, σ_m, P_m)の系列だけに注目することにして、
「この系列で m'=m+1 に置き換えればよい」
と漠然とイメージするだけで時枝記事への反論が
成立するだろうという暴論に出ているのがアホ主である
ただの詭弁としか言いようがない。頭が腐っている
179: 132人目の素数さん [sage] 2019/01/14(月) 23:19:45.01 ID:bs/zORq6(7/7) AAS
再掲するが、有限モデル(Ω_m, σ_m, P_m)では反例にならないので、
反例の「候補」になり得るのは、m→∞ の "極限" を取った(Ω, σ, P)しかない。
なので、(Ω_m, σ_m, P_m)の系列そのものをいくら眺めても、時枝記事の反例にはならない
(Ω, σ, P)を直視する以外に、反例への道筋はない
(Ω, σ, P)を直視したくないからこそ有限モデル(Ω_m, σ_m, P_m)を
持ち出していたアホ主だが、結局は(Ω, σ, P)を直視する以外に選択肢はないのだ
そして、(Ω, σ, P)が実際に反例になるというのなら、
アホ主は>>172のウルサイ問題を全てクリアしなければならない
「この系列で m'=m+1 に置き換えればよい」などという暴論は成立しない
アホ主は>>172のウルサイ問題を全てクリアしなければならない
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.039s