[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む58 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
275(1): 132人目の素数さん [sage] 2019/01/18(金) 07:00:47.99 ID:Clcw85fU(1/7) AAS
>>273
>無限族を使って
>「n番目の箱にXnのランダムな値を入れ」ということ 及び
>「無限族として独立なら,当てられっこない」と記されている
それこそ時枝氏の「感想」じゃん
証明もなにもない スレ主は池沼か?
279(1): 132人目の素数さん [sage] 2019/01/18(金) 11:06:47.79 ID:Clcw85fU(2/7) AAS
>>277
>これ、結構、自分ではこの例は気に入っています(^^
馬鹿は間違いを気に入るから、いつまでも正しいことが学べない
>濃度はV1とV2で等しい
上記から下記はいえない (V1とV2がともに可測の場合も)
>V1に入るかV2に入るか、二択で、どちらに入るかは確率1/2だと。
スレ主 頭ウジ湧いてんのか?
280(1): 132人目の素数さん [sage] 2019/01/18(金) 11:12:00.51 ID:Clcw85fU(3/7) AAS
時枝記事の確率計算は、スレ主の>>277の”間違った例”とは全く無関係に
単に数列100個を固定し、その中から1つ選んだものが予測可能かどうか
判定するだけのこと
286: 132人目の素数さん [sage] 2019/01/18(金) 19:08:28.57 ID:Clcw85fU(4/7) AAS
>>281
「例の作り方が悪い」といわれてるんだがね
例えばヴィタリ集合Vを使うのなら
f:[0,1]→Q
関数fは、r∈[0,1]に対して,
rと有理数差の同値類に属する
v∈Vをみつけ、r-vを返す
を構築し、そのうえで
g:[0,1]×[0,1]→{0,1,2}
関数gは(r1,r2)∈[0,1]×[0,1]に対して
f(r1)=f(r2)ならば0
f(r1)>f(r2)ならば1
f(r1)<f(r2)ならば2
を返す
を構築して
V0={(r1,r2)|g(r1,r2)=0}
V1={(r1,r2)|g(r1,r2)=1}
V2={(r1,r2)|g(r1,r2)=2}
という集合をつくり、
[0,1]×[0,1]全体で測度1のとき
V1,V2の両者が同じ測度でたかだか測度1/2
になるかと問えばいい
(ちなみに、V0,V1,V2は互いに重なり合わず
r1とr2をひっくり返せば,V0はV0自身に
V1とV2は互いに移りあう)
「交互に入れる」とか「濃度は等しい」とか
馬鹿丸出しの幼稚な発言は無意味
ほんとスレ主ってアタマ悪いな
で、上記のV1,V2に関する問いの答えは
「そんなことはいえない」
287: 132人目の素数さん [] 2019/01/18(金) 19:08:53.73 ID:Clcw85fU(5/7) AAS
>>284
>非可測を使う確率計算ってところが、
>数学的にグレーだから話は単純じゃない
まず、非可測集合を使う確率計算は
グレーじゃなく不可能
次に、時枝記事では、確率計算に
非可測集合を全く使っていない
要は100列の数列全体((R^N)^100)を
確率変数Ω→Eの定義域とはしていない
単純に与えられた数列100列について
Ωを附番の集合{1,・・・,100}とし
{1,・・・,100}→{0,1}
(値域の0は予測失敗、1は予測成功を表す)
から計算している
定義域の1〜100は、それぞれ測度1/100
上記の関数で、0の値をとる点はたかだか1個だから
1の値をとる点の測度は少なくとも99/100
ただそれだけ 理解してないのはスレ主だけw
288: 132人目の素数さん [] 2019/01/18(金) 19:09:30.13 ID:Clcw85fU(6/7) AAS
>>284-285
>「時枝記事が否定されたら、選択公理が否定される」とか、
>そんな寝言は聞き飽きたんだよね
寝言いってんのはスレ主
スレ主は時枝記事が間違ってる、
予測できるわけがない、
といってるんだろう?
しかし、
・無限公理により、無限列の終端が存在しない
・選択公理により、尻尾の同値類の代表元が取れる
としたら、もはや予測を止める手段はない
予測できない場合というのは
1)列の決定番号が終端の場所でその先の箱が存在しない
2)そもそも代表元をとることができない
の2つしかないわけだ
スレ主は1)か2)のどちらか1つを選ぶしかない
1)を選べば、Nが無限公理の集合だという
事実を理解してない馬鹿野郎ということになる
2)を選べば、オレ様の「無限丸ごと独立性」を否定する
選択公理なんか認めねえってことになる
「非可測だから確率は計算できない」とかいうのは寝言
スレ主の計算の仕方が悪いだけだから
非可測集合を使わずに、計算すればいい
実際そうしている
289: 132人目の素数さん [] 2019/01/18(金) 19:10:11.42 ID:Clcw85fU(7/7) AAS
ところで、もし時枝記事が
「さて、1〜100のいずれかをランダムに選ぶ」
ではなく
「さて、100列目を選ぶ」
と書かれていたならば
Ωを100列の数列全体として
確率を計算する必要があった。
つまり、時枝記事の確率とは
「(予測失敗列の分布がどうであれ)
予測失敗列はたかだか1個しかないから
列をランダムに選べば、その列が
予測失敗列である確率が
たかだか1/100」
なのであって
「どの列についても、その列が
予測失敗列になる確率が
たかだか1/100」
なのではない
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.043s