[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む54 (652レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
560(1): 132人目の素数さん [sage] 2018/11/18(日) 18:16:34.74 ID:VI2J3jq9(1/2) AAS
気晴らしに見に来ました。お久しぶりです、おっちゃんです。また時枝問題やってんのか。
実数列の集合 R^Nを考える. 実数列 s=( s_1、s_2、s_3、… )、s'=( s'_1、s'_2、s'_3、… )∈R^N について、
或る番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき関係〜を s 〜 s' と定義する。
関係〜は同値関係になる。非可測集合を考えて、商射影 R^N→ R^N/〜 の切断を構成したのは
R^N から収束する実数列を取り出して時枝問題を成立ため。
実数列には収束する実数列と正か負の無限大に発散する実数列と、振動する実数列とがあって、
非可測集合を考えて、商射影 R^N→ R^N/〜 の切断を構成しないと、
名前を忘れたが収束列を考える問題は成立しない。
でな〜、その名前を忘れた問題では、或る実数aに収束する実数列 {a_n} の或る第m項 a_m を除く他の {a_n} の項をすべて見ると、
収束する実数列 {a_n}} について n→+∞ のとき a_n→a となることを考えていることになる。
mは収束する実数列 {a_n}} の決定番号だから、aに収束する実数列に関して、
{a_n} の R^N における同値関係〜についての同値類の代表元が決まってその代表元がaになる。
従って、無限列を考えるときは箱の中の数が当たる確率が1になる。
有限列を考える本来の時枝問題では、n→+∞ とすることは出来ないため、
有限集合上で等確率で選ばれる箱の中の数が当たる確率を考えている。
その確率は、0より大きく1より小さいが、有限集合の点の数つまり有限列の項の個数が増えれば増える程1に近づいて行く。
561(1): 132人目の素数さん [sage] 2018/11/18(日) 18:26:32.57 ID:VI2J3jq9(2/2) AAS
>>560の中程にある「{a_n}}」は「{a_n}」の間違い。
で、本来の時枝問題は非可測集合上で確率を考えてはなく、
有限集合従って零集合上で考えていて、零集合は可測集合だから、可測集合上で確率を考えている。
確率過程とかは全く必要なくて、確率を考える部分は、実質的には中学か高校の確率の問題になる。
それじゃ、おっちゃんもう寝る。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.033s