[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む54 (652レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
38
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/10/28(日) 21:35:15.83 ID:6dvusTGC(31/33) AAS
>>27
”顧みて他を言う”
https://kotobank.jp/word/%E9%A1%A7%E3%81%BF%E3%81%A6%E4%BB%96%E3%82%92%E8%A8%80%E3%81%86-458990
コトバンク
(抜粋)
顧みて他を言う
(読み)
カエリミテタヲイウ
デジタル大辞泉の解説
顧(かえり)みて他(た)を言う

《「孟子」梁恵王下から》
答えに窮して、あたりを見回して本題とは別のことを言ってごまかす。
39
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/10/28(日) 21:43:44.91 ID:6dvusTGC(32/33) AAS
>>38

数学はディベートとは違う
”顧みて他を言う”では済まない

自分の背理法証明の失敗を、
一致の定理の背理法を引いて、
救うことはできない

>>14より)
定理1.7 (スレ26のNo.422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、
f はある開区間の上でリプシッツ連続である.
(引用終り)

条件の”内点を持たない閉集合の高々可算和”を場合分けして
1)稠密でない場合
2)稠密な場合
それぞれを、証明すれば、それで終りの話だ
1)では、「ある開区間の上でリプシッツ連続である」は、楽に成立する
2)では、「ある開区間の上でリプシッツ連続である」は、成立しえない

2)の場合に、そんな関数は存在しないことが言えれば、系1.8は言える
それを、さっさと実行すればいいだけのことです。数学としては、それが王道でしょ?
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.054s