[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
98(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/02(火) 10:01:09.76 ID:p6PjQh75(1/14) AAS
>>96-97
>R\Qは?
(>>82より再録)
"で、”a nonempty open set”(ordinary open neighborhood )が、結構重要キーワードじゃないかな?
R中のQのように稠密分散で、
R\Qは、”a nonempty open set”の集まりになるけれども
(似た状況は、上記の「the Lebesgue measure of the sets R \ Cν and R \ Dν is 0, but the four sets Cν, R \ Cν, Dν, and R \ Dν are dense in R.」とある通りで)
「422に書いた定理」の系1.8の背理法証明に使えるような、区間(a, b)が取れると言えるかどうかだ?"
R\Qも、リウヴィル数に同じ
つまり、屋上屋の説明だが、RからQを抜く(Qは、孤立点の集合(内点を持たない閉区間の集合))
Rは至る所開(”a nonempty open set”(ordinary open neighborhood )の集合)
R\Qの各”a nonempty open set”(ordinary open neighborhood )は、ここにはq∈Qは含まれない
故に、このような場合には、「422に書いた定理」の系1.8の背理法証明に使えるような、区間(a, b)が取れると言えないのでは?
99: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/02(火) 10:03:28.28 ID:p6PjQh75(2/14) AAS
>>98 訂正
Rは至る所開(”a nonempty open set”(ordinary open neighborhood )の集合)
↓
R\Qは至る所開(”a nonempty open set”(ordinary open neighborhood )の集合)
100(3): 132人目の素数さん [] 2018/01/02(火) 10:25:50.08 ID:okX91MtS(3/8) AAS
>>98
>R\Qも、リウヴィル数に同じ
まずリュービル数全体は
>Since it is the intersection of countably many such open dense sets
のようですので
開集合とは言えませんし実際開集合ではありません
内点を持たないからです
内点を持つなら有理数の稠密性によりリュービル数である有理数がそんざいしてしまいますよ
次に
R\Qですが
Qは孤立点の集合ではありません
どの有理数の近傍にも必ず有理数が存在するからです
また閉集合でもありません
閉包がRだからです
ですのでR\Qもまた開集合にはならないのです
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.041s