[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
615(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/20(土) 17:59:39.07 ID:gQefYikW(7/21) AAS
>>614 補足
上記は、書き込み直前に改めて検索した結果だ
だから、googleのデータベースのインデックス内に取り込まれていないと思うよ
そもそも、このスレのカキコもヒットしないしね
44(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/29(金) 00:05:38.18 ID:wAjWw3D/(1) AAS
>>30
ところで、証明をつっついて悪いが
補題1.5の証明中で
1)
"∀y ∈ R[|y − x| <1/M → |f(y) − f(x)| <= N (y − x)] (1) が成り立つ"
を、条件 lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ から導いている
|y − x| <1/M は、そこに書かれているように、ある区間(x-1/M, x+1/M)のことだな
ならば、c = x-1/M 、d = x+1/M として、ある区間(c, d)と書けるだろ?
定理1.7の証明は、それで終りでは?
2)
それから、前スレ>>615で
”「 (a,b) ⊂ B_f を満たす開区間(a, b)が存在する」
という条件からは、
「 f は(a,b)上の 全 体 で リプシッツ連続である」という条件は導けない”
というが、それ(”全体で”)を導くことは、定理1.7(「f はある開区間の上でリプシッツ連続である」)をいうだけなら、不必要では?
( 上記のある区間(c,d)で、リプシッツ連続を言えば、定理1.7の証明は、そこで終わってないかい? )
3)
それから、これは重要だが、補題1.5の証明中で、"∀y ∈ R[|y − x| <1/M → |f(y) − f(x)| <= N(y − x)] (1) が成り立つ"というけれど
R−Bfが、稠密なら、区間(x-1/M, x+1/M)で、Dini微分が発散している点が、この区間内に多数存在することになるよ
それでも、"∀y ∈ R[|y − x| <1/M → |f(y) − f(x)| <= N(y − x)] (1) が成り立つ"が言えるのかね? (言えるとしても、区間内にDini微分発散点が稠密に存在するという前提を押さえた証明がなされるべきと思うが)
まあ、年末年始は忙しい
十分レスできないと思うが
貴方も、気張らずにやってください (^^
以上
617(1): 132人目の素数さん [] 2018/01/20(土) 18:10:21.85 ID:mEUvIos7(1) AAS
>>615
スレ主は論文にしろ検索にしろ
情報を精査することができないのかね?
一手間加えるだけで未然防止できるような
イージーミスが多くないか?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.040s