[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
562(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/18(木) 10:08:20.09 ID:dEXr3Ope(1/5) AAS
>>560 補足
例えば、下記トマエ関数は、”xが無理数の点でfは連続 xが有理数の点でfは不連続”であるが
どこかに、xが連続な開区間が取れるわけではない。(∵開区間内に必ず有理数Qの点が存在し、その点では不連続になるから)
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1127539791
関数の連続性 kessyoutouさん yahoo 2009/6/22
(抜粋)
問題が解けません。助けてください。お願いします。
f(x)=0 (xが無理数αの時)
f(x)=1/q (xがp/qつまり有理数の時)
とした時、f(x)が無理数の時は連続で、有理数の時は不連続であることを証明せよ。
ただし、稠密性(?)は用いてよいこととする。
つまり、Rの中にはある有理数について十分に近い無理数が存在しているということである。
稠密性のあたりの意味が全く分からず手に負えません。
できる方!!お願いします。
ベストアンサーに選ばれた回答 hsmtmk_tさん
xが無理数の点でfは連続
xが有理数の点でfは不連続
ですね。
基礎課程の微分積分の授業でしょうか。ε-δの練習問題ですが、
この問題は大学一年生が解くには割と難しい部類に入ると思います。
さて、それでは証明です。
(引用終わり)
361(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/10(水) 19:35:18.67 ID:xixJS48Q(3/11) AAS
>>359
どうも。スレ主です。
>さすがに80ものレス追う気せんわ
まあ、そうだろうね。論争当事者でなければ、レス追う気せんだろう
で、まあ、下記辺りが、彼の主張の中核だろうね
(前スレ)
「564 名前:132人目の素数さん[] 投稿日:2017/12/26(火) 12:39:46.63 ID:bh2BICch [2/4]
もともと取れないからこそ背理法が効くわけです
可算集合の補集合で微分可能→ある開区間で連続→矛盾→可算集合の補集合で微分可能ではない
という流れですよ
ある開区間で連続以降の論証に持ち込むのに
可算集合の補集合で微分可能→ある開区間で連続
の論証が最も重要です
565 返信:132人目の素数さん[] 投稿日:2017/12/26(火) 12:55:35.93 ID:bh2BICch [3/4]
>>562
> 例えば、>>554に示したように、”無理数で可微分、dense(稠密)な有理点のみ微分不可の函数は構成あり”(>>506)で、
> この背理法の論法が正しいならば、「微分可能なある区間(a, b)が取れないから(取れるとすると矛盾するから)、このような関数は存在しない」という結論が、導かれてしまう(本来有理点は稠密であるから、この背理法の論法自身がおかしい)
その関数は連続関数なのでは?それに微分可能な区間が取れないということからはそのような関数の存在も許されるということしか言えませんよ
566 名前:132人目の素数さん[] 投稿日:2017/12/26(火) 12:57:59.52 ID:bh2BICch [4/4]
許されるは変でした
許されないとは言えない
ですか」
(引用終り)
以上
563: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/18(木) 10:10:55.60 ID:dEXr3Ope(2/5) AAS
>>562 訂正
どこかに、xが連続な開区間が取れるわけではない。
↓
どこかに、f(x)が連続な開区間が取れるわけではない。
なか(^^
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.037s