[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
473
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/14(日) 09:36:57.01 ID:fNVDpqMq(7/38) AAS
>>472 つづき

http://eman-physics.net/quantum/hilbert.html
ヒルベルト空間 知らなくてもいいのだが、知らないと恥ずかしい。 EMANの物理学・量子力学・ヒルベルト空間
(抜粋)
 量子力学をやっていると「ヒルベルト空間」なんて言葉によく出くわす。実は学ぶ上でどうしても知っていなければいけないという言葉ではない。なぜならこれは数学用語だからだ。
 しかし、知らないというのは立場が弱い。学んだばかりの知識をひけらかす友人たちや、生徒を買い被ったフリをして楽しんでいる教授たちの口から「波動関数とはヒルベルト空間内で定義されるベクトルだ」なんて言葉が飛び出してくると、「それは一体何を意味するんだ?知ってなきゃいけないのか?」と不安にさせられてしまう。

 もしこんな事態に遭遇しても、
「ああ、そうだね。ついでに言えば、それは『無限次元複素ヒルベルト空間』のことだよね。」
と軽くかわすことが出来れば時間を無駄にしないで済む。

ベクトル空間

内積空間・ノルム空間

完備性
 さて「ヒルベルト空間」はまだなのかと待っていることと思うが、ここまでの話にもう一つ条件を加えるだけでいい。
・内積空間が完備性を持つとき、「ヒルベルト空間」という。
・ノルム空間が完備性を持つとき、「バナッハ空間」という。
 バナッハ空間については今回の話とは関係ないが、まぁ、数学ではこんな具合に分類されて名前が付いているんだよ、という雰囲気をつかめるように書いておいた。

 な。物理学者は「ヒルベルト空間」なんて言葉でカッコつけなくてもいいんだよ。他の数学的空間の性質と区別する必要があるときにだけ使えばいいんだからさ。

 で、気になっていることと思うが、「完備性」とは何だろうか。

つづく
474
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/14(日) 09:37:48.50 ID:fNVDpqMq(8/38) AAS
>>473 つづき

 コーシー列が収束する時、完備性を持つのだそうだ。ではコーシー列とは何かと言えば、集合から好きな要素を取り出して並べた時に、あるところより先の要素を見ると必ず、それらの要素間の距離がどんな狭い範囲にでも収まってしまう、そんなところが必ずある、という並びのことらしい。
ああ!数学ってのは七面倒くさい!!!とにかく、どこまでも狭い範囲に収まって行くような並びのことだ。

それで、狭い範囲に収まって行くのなら収束していると言えるのではないか、というと、そういう意味ではない。

 数学的な表現はやめて、分かりやすく言い直そう。これはベクトルが連続であることを定義しているのである。この性質は微分などを定義するためには是非とも必要なものだ。そして、それはもっと分かりやすく言えば、このベクトルの要素は実数か複素数の範囲でなければならないという意味である。初めからそう言えよ、って?私もそう思う。

こんなもんなんだよ
 なんだ、それだけか?結局、ぶっちゃけて言えば、「取り敢えずの計算に困らないベクトル空間」というくらいの意味だったということだ。実に他愛のない話だ。だからこそ一度知ってしまうと今度は逆に、これくらいは知ってないと恥ずかしいと思えてしまうわけで。
 まあ、奥は深いのだが、これだけ知ってるだけでもしばらくは困らない。さあ、立場の弱い友達の所へ行って知ったかぶりをするのだ!(笑
ま、この程度のものは黙ってた方が恥かかなくて済むかとも思うのだが、・・・判断はお任せしよう。

 波動関数がどうして無限次元複素ヒルベルト空間内のベクトルなのかを説明しないのかって?それは本文中できっちりやるつもりだ。取り敢えず、こういう本質ではない部分は脇へよけておきたかったのである。
(引用終り)

以上
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.206s*