[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
45(3): 132人目の素数さん [sage] 2017/12/29(金) 00:12:33.08 ID:gcYWyS10(1/7) AAS
>>40-42
>まだ、疑問に思っているのは
>下記のDifferentiability of the Ruler Functionの記述と貴方の定理との整合性だ
悪あがきは やめたまえ。前スレ540 で既に述べたとおり、
スレ主の大好きな f^r と f_w は、例の定理の反例になり得ない。
2chスレ:math
このレスにより、R−B_{f^r} は第一類集合にならず、R−B_{f_w} も第一類集合にならないので、
f^r と f_w は例の定理の「適用範囲外」ということになり、よって例の定理の反例になり得ない。
また、f^r と f_w が例の定理の「適用範囲外」であるという事実により、Differentiability of the Ruler Function が
どのように記述されていようとも、そのことと例の定理との間の整合性なんか 全 く 考 え る 必 要 が な い 。
636(1): 132人目の素数さん [sage] 2018/01/21(日) 01:01:18.47 ID:hREHM7MH(2/15) AAS
>>560
>1.「f はある開区間の上でリプシッツ連続である.」→「f は”Bf内の”ある開区間の上でリプシッツ連続である.」
> という表現にすべきだったろう。”Bf内の”は、私には自明だが、証明を書いた人は、
> 表現がまずく”証明のために作った”B_N,M”なる被覆空間の合併集合”との区別を忘れてしまった。つまり、”B_N,M”と”Bf”とを混同してしまったのだ
息をするように間違えるゴミクズ。キチガイ。
「f はある開区間の上でリプシッツ連続である.」という表現のままで完全に正しい。
「Bf内」という余計な条件は全く必要ない。
>2.集合の被覆(>>210ご参照)だから、被覆される集合と被覆する集合の性質とは、基本的には無関係。単に集合の大小関係にすぎない
> つまり、「Bf ⊆ ∪B_N,M」以上のことはなにも言えないから、「∪B_N,M」側について何か証明しても、”Bf”には無関係だということに気付いていない
息をするように間違えるゴミクズ。キチガイ。
証明の中では、ベールのカテゴリ定理を経由することで、ある B_{N,M} が内点を持つことが示される。
すなわち、(a,b) ⊂ B_{N,M} を満たす開区間 (a,b) が取れることが示される。
このことから、f は (a,b) 上でリプシッツ連続になることが示される。
お前がいつまでも証明から逃げ回って理解しようとしないだけ。
>” ruler function ”を思い浮かべれば、気付くのは容易だったろう
息をするように間違えるゴミクズ。キチガイ。何度も同じことを言わせるな。
ruler function を f とするとき、R−B_f は第一類集合になってないので、
f は例の定理の「適用範囲外」ということになり、よって例の定理の反例になり得ない(>>45)。
639: 132人目の素数さん [sage] 2018/01/21(日) 01:21:16.80 ID:hREHM7MH(5/15) AAS
以下、「 P ならば Q 」という形の命題の真偽について。
・ P が偽がならば、「 P ならば Q 」は真であるから、この命題は正しい。
・ P が真かつ Q が真ならば、「 P ならば Q 」は真であるから、この命題は正しい。
・ P が真かつ Q が偽ならば、「 P ならば Q 」は偽であるから、この命題は間違いとなる。
従って、もしこの方針で例の定理にイチャモンをつけたいのなら、
P が真なのに Q が偽になるような具体例を持ち出すしかない。
「 R−B_f が第一類集合であり、なおかつ、R−B_f が R の中に稠密に分布する」… (*)
というケースは、P が真なのに Q が偽になるようなケースの一例であるから、そのようなケースが
もし実在するなら、それを持ち出してもよい。しかし、少なくとも ruler function は(*)に該当しない。
なぜなら、ruler function に対しては R−B_f が第一類集合にならないからだ(>>45)。
お前はここから全く進歩していない。キチガイ。
そして、例の定理により、(*)は起こらないことが示される。
よって、(*)が成り立つような具体例を考えることそのものが無駄である。
素直に証明を読めばいいのに、お前は逆張りをして(*)から攻めようとするから、
論理的に こんがらがって トンチンカンな間違いに陥るのである。キチガイ。
650: 132人目の素数さん [sage] 2018/01/21(日) 10:35:49.99 ID:hREHM7MH(12/15) AAS
>>643
>反例にならないというが、それをいうためには、”R−Bf が内点を持たない閉集合の高々可算和で被覆できる”
>を否定する証明を別にしなければならない
>それは、”R−Bf が内点を持たない閉集合の非可算和でしか被覆できない”という方向でしか、証明できない。
>(「ある開区間の上でリプシッツ連続である」とは証明できない)
息をするように間違えるゴミクズ。キチガイ。レベルが低すぎる。問題外。
ruler function が例の定理の反例にならないことは既に示してある(>>45)。
実際には、>>45 から引用されている
2chスレ:math
において、ruler function が反例にならないことの根拠が書いてある。
大きなポイントは、スレ主がたびたび引用している
>THEOREM: Let g be continuous and discontinuous on sets
>of points that are each dense in the reals.
>Then g fails to have a derivative on a
>co-meager (residual) set of points. In fact,
>g fails to satisfy a pointwise Lipschitz
>condition, a pointwise Holder condition,
>or even any specified pointwise modulus of
>continuity condition on a co-meager set.
という定理である( co-meager という性質をよく見たまえ)。
この定理により、ruler function に対しては
「 R−Bf は第一類集合にならない 」ことが示されるのである。
既に論破済みの ruler function とかいう関数をいつまでも持ち出すなよゴミクズ。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.045s