[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
401
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 20:14:11.83 ID:dLTvfhGd(6/18) AAS
>>399
>スレ主に分かり易いのはコーシーの剛性定理だろう。

おっちゃん、19世紀の人間かい?

ところで、下記にen.wikipediaにいろいろあるが
コーシーは、7番目”7.Cauchy's theorem on geometry of convex polytopes states that a convex polytope is uniquely determined by the geometry of its faces and combinatorial adjacency rules.”
やね

で、1番目と2番目見えるか?(^^
”1.Harmonic functions ・・・.”
”2.Holomorphic functions ・・・.”

1番目、2番目とも、1変数解析函数からみよ(^^

https://en.wikipedia.org/wiki/Rigidity_(mathematics)
Rigidity (mathematics)
(抜粋)
In mathematics, a rigid collection C of mathematical objects (for instance sets or functions) is one in which every c ∈ C is uniquely determined by less information about c than one would expect.

The above statement does not define a mathematical property. Instead, it describes in what sense the adjective rigid is typically used in mathematics, by mathematicians.

Some examples include:

1.Harmonic functions on the unit disk are rigid in the sense that they are uniquely determined by their boundary values.
2.Holomorphic functions are determined by the set of all derivatives at a single point.
A smooth function from the real line to the complex plane is not, in general, determined by all its derivatives at a single point, but it is if we require additionally that it be possible to extend the function to one on a neighbourhood of the real line in the complex plane. The Schwarz lemma is an example of such a rigidity theorem.

つづく
402
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 20:14:35.24 ID:dLTvfhGd(7/18) AAS
>>401 つづき

3.By the fundamental theorem of algebra, polynomials in C are rigid in the sense that any polynomial is completely determined by its values on any infinite set, say N, or the unit disk. By the previous example, a polynomial is also determined within the set of holomorphic functions by the finite set of its non-zero derivatives at any single point.
4.Linear maps L(X, Y) between vector spaces X, Y are rigid in the sense that any L ∈ L(X, Y) is completely determined by its values on any set of basis vectors of X.
5.Mostow's rigidity theorem, which states that the geometric structure of negatively curved manifolds is determined by their topological structure.
6.A well-ordered set is rigid in the sense that the only (order-preserving) automorphism on it is the identity function. Consequently, an isomorphism between two given well-ordered sets will be unique.
7.Cauchy's theorem on geometry of convex polytopes states that a convex polytope is uniquely determined by the geometry of its faces and combinatorial adjacency rules.
8.Alexandrov's uniqueness theorem states that a convex polyhedron in three dimensions is uniquely determined by the metric space of geodesics on its surface.

See also
Uniqueness theorem
Structural rigidity, a mathematical theory describing the degrees of freedom of ensembles of rigid physical objects connected together by flexible hinges.
This article incorporates material from rigid on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.
(引用終り)

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.049s