[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
383(1): 132人目の素数さん [sage] 2018/01/11(木) 10:14:50.34 ID:pCvZqe21(2/9) AAS
>>375
>さて、f(x) = 0 if x is irrational→f(x) = F(x) if x is irrationalとする
>
>The modefied ruler function f is defined by
>f(x) = F(x) if x is irrational,
>f(0) = 1, and
>(さらに有理数で場合けして)
>f(x) = F(x) if q>= m, x = p/q ∈Q
>f(x) = F(x)+ 1/w(q) if q< m, x = p/q ∈Q
>where p and q are relatively prime integers with q > 0.
>
>ここに、 F(x) は、簡単のために、解析函数で多くの多項式や初等関数のように、
>無限大のみに極を持つとする。(有限の範囲に極があっても問題ないが、記述が複雑になる)
>>367の補足としてmを或る値として続けて書いているようだが、
解析関数 F(x) の定義域は複素平面Cの弧状連結で開円盤を含む開集合だから、
虚部が0ではない何らかの複素数xに対しても F(x) は定義されることになる。
だが、f(x)=F(x) としているのに、そのような複素数に対する F(x) の複素数値の定義がどこにもなされていないので、
その定義は意味をなさない。結局実関数 f(x) を直線R上で定義することになる。
385(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 10:54:01.96 ID:clSPRjXH(3/11) AAS
>>383
>結局実関数 f(x) を直線R上で定義することになる。
無問題。
実関数 f(x) を直線R上で定義し、それが解析関数なら、解析接続でき、一致の定理が適用でき、リーマン球面上の解析関数として一意である
https://ja.wikipedia.org/wiki/%E8%A7%A3%E6%9E%90%E6%8E%A5%E7%B6%9A
解析接続
https://ja.wikipedia.org/wiki/%E4%B8%80%E8%87%B4%E3%81%AE%E5%AE%9A%E7%90%86
一致の定理
(抜粋)
一致の定理(いっちのていり、英: Identity theorem)は、複素解析において、通常は可算点列上で局所的に一致する2つの正則関数が大域的に一致することを主張する定理である。重要な定理であり、解析接続の一意性の証明にはこの定理が必要となる。
この定理には名は冠されていないが、1844年頃、リウヴィルが楕円関数に特殊な形で適用したのが最初であり、直後にコーシーが自分が開発した複素解析の中に取り入れて一般化したものである[1]。
(引用終わり)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.051s