[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
380(1): 132人目の素数さん [sage] 2018/01/11(木) 09:32:37.68 ID:pCvZqe21(1/9) AAS
おっちゃんです。
スレ主が導こうとしている結論は元からどのようにしても導けない
(定理 1.7 の反例を挙げてそれを否定することは出来ない)
から、幾らやってもムダ。
382: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 09:57:59.92 ID:clSPRjXH(2/11) AAS
>>380
話は逆で
(>>376に書いた通りだが)
(>>180)”定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間の
上でリプシッツ連続である.”
で、
1)補集合R−Bfが、”が内点を持たない閉集合の可算”有限”和で被覆できるならば、 f はある開区間の上でリプシッツ連続である.”は、正しい
しかし
2)補集合R−Bfが、”が内点を持たない閉集合の”稠密”分散可算無限和で被覆できるならば、 f はある開区間の上でリプシッツ連続とはできない.”が、正しい
補足
1)補集合R−Bfが主に有理数Qで、Bfが主に無理数( R\Q)を想定したもの
2)有理数Qが稠密である以上、無理数のみからなる開区間(a, b)など取れるはずもない
中学校レベルの話だろう
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.037s