[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
361(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/10(水) 19:35:18.67 ID:xixJS48Q(3/11) AAS
>>359
どうも。スレ主です。
>さすがに80ものレス追う気せんわ
まあ、そうだろうね。論争当事者でなければ、レス追う気せんだろう
で、まあ、下記辺りが、彼の主張の中核だろうね
(前スレ)
「564 名前:132人目の素数さん[] 投稿日:2017/12/26(火) 12:39:46.63 ID:bh2BICch [2/4]
もともと取れないからこそ背理法が効くわけです
可算集合の補集合で微分可能→ある開区間で連続→矛盾→可算集合の補集合で微分可能ではない
という流れですよ
ある開区間で連続以降の論証に持ち込むのに
可算集合の補集合で微分可能→ある開区間で連続
の論証が最も重要です
565 返信:132人目の素数さん[] 投稿日:2017/12/26(火) 12:55:35.93 ID:bh2BICch [3/4]
>>562
> 例えば、>>554に示したように、”無理数で可微分、dense(稠密)な有理点のみ微分不可の函数は構成あり”(>>506)で、
> この背理法の論法が正しいならば、「微分可能なある区間(a, b)が取れないから(取れるとすると矛盾するから)、このような関数は存在しない」という結論が、導かれてしまう(本来有理点は稠密であるから、この背理法の論法自身がおかしい)
その関数は連続関数なのでは?それに微分可能な区間が取れないということからはそのような関数の存在も許されるということしか言えませんよ
566 名前:132人目の素数さん[] 投稿日:2017/12/26(火) 12:57:59.52 ID:bh2BICch [4/4]
許されるは変でした
許されないとは言えない
ですか」
(引用終り)
以上
362: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/10(水) 19:44:36.98 ID:xixJS48Q(4/11) AAS
>>361 補足
で、私の主張は、下記
(前スレより)
「607 自分:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/12/27(水) 07:13:19.94 ID:JqNELMW3 [2/8]
>>604
>で?そのあとの最終的な結論は?
単純に場合分けをしただけだよ(>>561を 微修正)
1)補集合R−Bfが、R中で稠密で無い場合:この場合は、どこかにBfを満たす区間(a, b)が取れる(べき)。そして、条件Bfが成り立つならば、(a, b)で連続である
2)補集合R−Bfが、R中で稠密である場合:この場合は、どこにもBfを満たす区間(a, b)は、取れない。
それだけ
608 自分返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/12/27(水) 07:20:51.76 ID:JqNELMW3 [3/8]
>>607
(補足)
1)の場合
lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ が、区間(a, b)で成り立っているとする
区間(a, b)での、lim sup y→x |(f(y) − f(x))/(y − x)|の最大値を、Mとする
lim sup y→x |(f(y) − f(x))/(y − x)|<= Mと書ける
区間(a, b)で、リプシッツ連続である
以上
614 返信:132人目の素数さん[sage] 投稿日:2017/12/27(水) 20:28:08.95 ID:hLkm2n+q [1/4]
>>607
「場合分けしただけ」というのが最終的な結論なのであれば、
「例の定理(もしくは "弱い定理")は自明な定理であって、証明の必要がない」
という当初の主張は撤回するということだな?
だったらそれでいい。場合分けすること自体には別に間違いもクソもないからな。
621 自分:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/12/27(水) 23:17:07.10 ID:JqNELMW3 [7/8]
>>614
場合分けは、普通は、証明のためだよ
自得するのを、待ったんだが・・(^^
貴方の証明を斜め読みしたが、稠密で無い場合、つまり、どこかにBfを満たす区間(a, b)が取れる前提でしか、
証明していないように見えるが、どう?」
(引用終り)
以上
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.028s