[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
353(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/10(水) 13:53:48.62 ID:vsfEZQC9(12/17) AAS
>>350
<参考>
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1462189709
ローマ帝国がキリスト教化しなかったら、人類の科学技術は1000年くらい早く今のレベルに到達していたというのは本当ですか? rmcgkfさん yahoo 2011/5/13
(抜粋)
ベストアンサーに選ばれた回答 xiaomaoさん 2011/5/14
古代ローマ人の頭が良かったというより、キリスト教が「疑うこと」を悪と見なしたため、古代ローマ時代に獲得した技術が失われ、中世の時代の技術発展が停滞したからです。
例えて言うなら、古代ローマ時代までの人たちが順調に積み重ねていた積み木が崩れて、またゼロからやり直しになったんです。
積み木が崩れることが無く、そのまま順調に積み重ねていたらきっと1000年くらいは早くなっただろう・・・という意味です。
科学技術というのは「あの太陽とはいったい何なのだろう?」と疑うところから出発します。しかし、キリスト教では世界というのは聖書に書いてある通り神が作ったものであり、それを疑い実験しようものなら神を試す行為として糾弾されました。
そのため、技術の発展が止まってしまったんです。
それに加えて、ローマ時代の文献はラテン語で書かれていたのですが、聖職者はラテン語を神学を学ぶ為だけのものとして独占してしまったんです。そのため、古代ローマ人が培った技術を読めるものがいなくなって失われてしまいました。ちなみに、後にそれはおかしいということで、ラテン語で文献を読む人たちが出てきて技術を復興します。それがルネサンスです。
失われてしまった技術の例としては、都市に完備された上下水道網、各都市をつなぐ舗装された幹線道路、
コンスタンティノポリスのような巨大かつ堅固な城壁を築く築城技術、それを破ることが出来るような精度の高い投石器や様々な力学を駆使した攻城兵器、
「アンティキティラ島の機械」を作ることが出来るほどの天文知識と機械技術、現代にも見劣りしない「ミロのヴィーナス」のような美術・・・などなどキリがありません。
なんかこう書くとキリスト教が悪いように見えてしまいますが、この中世の時代を当のキリスト教徒である西洋人たち自身が「暗黒の時代」と呼び、現代では戒めとしています。そういう反省し教訓とする姿勢は見習うべきものであるでしょう。
(引用終わり)
つづく
354(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/10(水) 13:54:57.76 ID:vsfEZQC9(13/17) AAS
>>353 つづき
https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E5%8F%B2
数学史
(抜粋)
3.5 ギリシアおよびヘレニズム数学(紀元前550年?西暦300年頃)
4 中世以降のヨーロッパ数学の発展
4.1 中世初期(西暦500?1100年頃)
4.2 ヨーロッパ数学の復活(西暦1,100?1,400年頃)
5 近代ヨーロッパ数学(西暦1400?1600年頃)
ピタゴラス学派は無理数の存在を発見した。エウドクソス(紀元前408?355年頃)は、現在の積分法の先駆である、取り尽くし法を開発した。アリストテレス(紀元前384?233年頃)は最初に論理学の法を書いた。
エウクレイデスは今日の数学でも使用される形式である、定義、原理、定理、証明の最も初期の例である。
彼はまた円錐曲線の研究も行った。彼の本、『ユークリッド原論』は、20世紀の中頃まで、西洋で教育を受けたものすべてに知られていた[31]。
ピタゴラスの定理などの幾何学のよく知られた定理に加えて、『ユークリッド原論』には2の平方根が無理数であることや素数が無限に存在することの証明が記述されている。素数の発見にはエラトステネスの篩(紀元前230年頃)が使用された。
ギリシア数学の、あるいは全時代の最も偉大な数学者は、シラクサのアルキメデス(紀元前287?212年)であると言われている。
プルタルコスによると、75歳のとき、地面に数式を書いている最中にローマの軍人に槍で刺されたとされている。古代ローマは純粋数学への関心の証拠をほとんど残していない。
中世以降のヨーロッパ数学の発展
中世ヨーロッパの数学への関心は、現代の数学者と全く異なる動機にもよっていた。
その1つは、数学による自然の記述を通じて宗教的な理解が促進されるという信念であり、プラトンの『ティマイオス』および聖書の『知恵の書』11章20節[33]によって幾度も正当化された。
(引用終わり)
つづく
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.034s