[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
281
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 21:10:58.54 ID:KgoytC9i(12/15) AAS
>>280 つづき

ところで、下記は、指示関数そのものではないが、R中の部分集合Bfとその補集合R−Bfに分けて、関数値を決めていると考えることができる
(>>268)
https://kbeanland.files.wordpress.com/2010/01/beanlandrobstevensonmonthly.pdf
Modifications of Thomae’s function and differentiability, (with James Roberts and Craig Stevenson) Amer. Math. Monthly, 116 (2009), no. 6, 531-535.
の記載より(抜粋)
2. MODIFIED THOMAE FUNCTION.
Let (ai) be a sequence of reals decreasing to zero. Define the modified Thomae
function with respect to (ai) as follows:
T(ai)(x)
= 0 if x ∈ R \ Q,
= an if x = m/n where m and n are coprime,
= 1 if x = 0.

Since limn an = 0, T(an) is continuous on the irrationals. The faster the sequence (ai)
tends to zero, the larger the set of irrationals on which T(ai) will be differentiable.

3. A DENSE SET. While attempting to prove that T(1/n^2) is differentiable on the irrationals,
we discovered that quite the opposite is actually true. In fact, as the following
proposition indicates, functions that are zero on the irrationals and positive on the rationals
will always be non-differentiable on a rather large set.

Proposition 3.1. Let f be a function on R that is positive on the rationals and 0 on the irrationals.
Then there is an uncountable dense set of irrationals on which f is not differentiable.
(引用終り)

つづく
282: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 21:12:26.56 ID:KgoytC9i(13/15) AAS
>>281 つづき

この”function on R that is positive on the rationals and 0 on the irrationals. ”で考えてみると
「0 on the irrationals」の部分は、不変というか動かせない。
動かせるのは、「positive on the rationals」の方のみで、「= an if x = m/n where m and n are coprime,」の部分のみ。

でさらに考えてみると、
「= an if x = m/n where m and n are coprime,」で、an:positive or an=0 の二択問題。(一般性を失わず負数は除外するとして)

an=0の場合、この点(有理点)では連続になる。
が、an:positiveの場合、この点(有理点)では不連続であって、それ以外の選択肢例えば、「連続であるがリプシッツ連続ではない」ということは、あり得ない

繰返すが、Proposition 3.1. のような、「a function on R that is positive on the rationals and 0 on the irrationals. 」という規定では、
an:positive or an=0 の二択で、それぞれ不連続か連続かの二択で、それ以外の選択肢は、あり得ない

ところで、上記で、T(ai)(x) = F(x) if x ∈ R \ Q において、ここに、F(x)が解析関数なり、微分可能関数を取ったとしよう
そのときは、
=F(x)+ an if x = m/n where m and n are coprime,
=F(x)+ 1 if x = 0.

と考えれば、いままでの議論がそのまま踏襲できる。(つまり、"F(x)=0 if x ∈ R \ Q "の場合だけで、 微分や連続についての議論は尽くされていることになる)
(なお、このような、有理数と無理数とに分けて、それぞれ異なる方式で値を決める関数は、上記、”不連続性の分類(wikipedia)”の「可除不連続点」(除きうる不連続点)しかなりえない)

なので、結局、c)d)の2ケースのR−Bfが”一般の不リプシッツ連続(除く不連続)*)”の場合は、考える余地がないように思う

以上
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.025s