[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
269(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 16:48:13.57 ID:KgoytC9i(8/15) AAS
>>268 つづき
だから、定理1.7は、二つに分けて
1.R−Bfが稠密でなく、Bfがある開区間(a, b) を含む場合
2.R−Bfが稠密で、Bfが全く開区間(a, b) を含まない場合
とすべき
1.の場合、”f はある開区間の上でリプシッツ連続である.”は自明。ほとんど、証明の必要もない
2.の場合、「非可算無限の集合E:”any specified pointwise modulus of continuity condition” & ”at least one of the four Dini derivates of f is infinite”が、存在することになるので、そのようなfは存在しえない」のような方向を目指すべき
2.の場合をさらに細分化する(>>194を一部修正)
R−Bf がR中で稠密な場合を更に、4つに細分する
a)R−Bfが不連続、Bfが可微分(これが系1.8に当たる)
b)R−Bfが不連続、Bfが一般のリプシッツ連続(除く可微分)*)
c)R−Bfが一般の不リプシッツ連続(除く不連続)*)、Bfが可微分
d)R−Bfが一般の不リプシッツ連続(除く不連続)*)、Bfが一般のリプシッツ連続(除く可微分)*)
(注*)一般のリプシッツ連続とはlim sup y→x |(f(y) − f(x))/(y − x)|< +∞を満たすこと、一般の不リプシッツ連続とはlim sup y→x |(f(y) − f(x))/(y − x)|= +∞を満たすこと)
系1.8は、定理1.7中の上記a)の場合。b)は下記。よって、a)b)のみが、既存の別証明がある*)。しかし、c)d)の2ケースは、既存の証明は見つかっていない
*)b)は、(>>189)H. M. Sengupta and B. K. Lahiriの結果より
”Let E be the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite.
Then E is co-meager in R (i.e. the complement of a first category set).”が成り立つことが分っている
繰返すが、c)d)の2ケースで、有理数Qを想定して、R−Bf がR中で稠密かつ可算濃度の集合の場合に、ケースc)d)のような関数f : R → Rが存在するか否か
そこが、まだ不明。
以上
280(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 21:10:10.29 ID:KgoytC9i(11/15) AAS
>>269 追加
突然の引用だが
https://ja.wikipedia.org/wiki/%E4%B8%8D%E9%80%A3%E7%B6%9A%E6%80%A7%E3%81%AE%E5%88%86%E9%A1%9E
不連続性の分類
(抜粋)
ある関数がその定義域内のある点で連続でないとき、その関数は不連続性 (discontinuity) を有する。関数の不連続点全体の成す集合は離散集合の場合もあるし、稠密集合の場合もある。場合によっては定義域全体と同じとなるかもしれない。
本項目では、最も単純な実一変数で実数を値にとる函数の場合における不連続性の分類を述べる。
不連続性の分類
1.可除不連続点: L? と L+ が有限確定(存在して有限)で相等しいが f(x0) ≠ L であるとき、f(x) は x = x0 に除去可能な不連続点 (removable discontinuity) を持つという。f(x0) の値を変更して「x = x0 においても連続であるようにする」ことができるという意味でこの不連続性は除きうる。
関数の不連続点の集合
・函数の連続点の全体からなる集合は開集合の可算個の交わり(Gδ-集合)である。また不連続点の全体は閉集合の可算個の合併(Fσ-集合)である。
・単調関数の不連続点は高々可算である。これをフローダの定理(英語版)という。
・トマエ函数は、全ての有理数の点で不連続だが、全ての無理数の点で連続である。
・ディリクレ函数として知られる、有理数全体の集合の指示函数は至る所不連続である。
(引用終り)
https://ja.wikipedia.org/wiki/%E6%8C%87%E7%A4%BA%E9%96%A2%E6%95%B0
指示関数
(抜粋)
数学において指示関数(しじかんすう、英: indicator function)、集合の定義関数[1]、特性関数(とくせいかんすう、英: characteristic function)は、集合の元がその集合の特定の部分集合に属するかどうかを指定することによって定義される関数である。
(引用終り)
つづく
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.040s