[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
215
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/07(日) 12:00:56.62 ID:2l42E8SE(6/29) AAS
>>214 つづき

【3】ディオファントス近似と位数

実数xが無限に多くのqに対して

  ||qx||<q^(1-α)

となるとき,位数αまで近似可能といいます.そして,α>2となる実数は存在し,そのような実数全体のハウスドルフ次元は2/αであることが証明されています(Jarnikの定理).

(引用終り)

つづく
216
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/07(日) 12:04:53.46 ID:2l42E8SE(7/29) AAS
>>215 つづき

https://ja.wikipedia.org/wiki/%E3%83%8F%E3%82%A6%E3%82%B9%E3%83%89%E3%83%AB%E3%83%95%E6%AC%A1%E5%85%83
(抜粋)
ハウスドルフ次元
フラクタル幾何学におけるハウスドルフ次元は、1918年に数学者フェリックス・ハウスドルフが導入した、ハウスドルフ測度が有限な値をとり消えていないという条件に適合する次元の概念の非整数値をとる一般化である。
すなわち、きちんとした数学的定式化のもと、点のハウスドルフ次元は 0、線分のハウスドルフ次元は 1、正方形のハウスドルフ次元は 2、立方体のハウスドルフ次元は 3 である。
つまり、旧来の幾何学で扱われるような、滑らかあるいは有限個の頂点を持つ点集合として定義される図形のハウスドルフ次元は、その位相的な次元に一致する整数である。
しかし同じ定式化のもとで、フラクタルを含めたやや単純さの少ない図形に対してもハウスドルフ次元を計算することが許されるが、その次元は非整数値を取りうる。
大幅な技術的進展がエイブラム・サモイロヴィッチ・ベシコヴィッチによりもたらされて高度に不規則な集合に対する次元の計算が可能となったことから、この次元の概念はハウスドルフ?ベシコヴィッチ次元としても広く知られている。


・可算集合のハウスドルフ次元は 0
・ユークリッド空間 Rn のハウスドルフ次元は n、円 S1 のハウスドルフ次元は1
・フラクタル図形はルベーグ被覆次元を超える。例えば、カントール集合のルベーグ被覆次元は 0 であるが、ハウスドルフ次元は log(2)/log(3) ? 0.63[4]
・シェルピンスキーのギャスケットのハウスドルフ次元は log(3)/log(2) ? 1.58
・ペアノ曲線のような空間充填曲線やシェルピンスキー曲線は充填される空間と同じハウスドルフ次元を持つ
・2次元以上の空間におけるブラウン運動のハウスドルフ次元はほとんど確実に(つまり確率 1 で)2 である[5]

関連項目
・ハウスドルフ次元別フラクタルの一覧: 決定論的フラクタル、確率フラクタル、自然フラクタル…
・アスワド次元: ハウスドルフ次元同様に(球体被覆を用いて)定義されたフラクタル次元
・内在次元
・パッキング次元: ハウスドルフ次元と双対的に、球体充填の定める内測度から定義されたフラクタル次元
・フラクタル次元

(引用終り)
以上
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.039s