[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
212(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/07(日) 10:45:35.23 ID:2l42E8SE(3/29) AAS
>>210-211 つづき
代数トポロジーでの被覆には、被覆する空間と被覆される側の空間との間に、連続全射 p : C → X の存在を条件としている(>>211)
しかし、単に 「集合の被覆」では、”和集合が集合全体となるような部分集合の集合”というだけで、被覆する集合と被覆される側の集合との間には、連続全射は要求されていない
そこが大きな違いだろうね
219(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/07(日) 14:08:43.48 ID:2l42E8SE(9/29) AAS
>>204 戻る
>で、「特に, (a, b)⊆BN,M なる開区間(a, b) が取れる」の部分
>開区間(a, b) が取れるのは、被覆する側の集合のBN,Mだろ?
>で、R−BfがQのようにR中に稠密に分散している場合を考えると、Bf自身は内点を持たないし、区間(a, b) も取れないことは自明(参考>>128より)
>
>で、被覆する方の集合のBN,Mにおいて、それが内点を持ち、そこに区間(a, b) が取れるとしても、
>”それにより被覆される側のBfが同じ性質を持ち、区間(a, b) が取れる”とする証明がね〜、いまいち納得できないんだ(^^
(>>212より)"代数トポロジーでの被覆には、被覆する空間と被覆される側の空間との間に、連続全射 p : C → X の存在を条件としている(>>211)
しかし、単に 「集合の被覆」では、”和集合が集合全体となるような部分集合の集合”というだけで、被覆する集合と被覆される側の集合との間には、連続全射は要求されていない
そこが大きな違いだろうね"
この意識がすっかり抜けているように思う
被覆する方の集合BN,Mで証明されれば、即被覆される側の集合Bfでの証明が終わっていると勘違いしているのでは?
それと、被覆について、”稠密(dense)”の意識が希薄だと思う
例えば、定理1.7の証明中で
「補題1:5 を満たすN,M >= 1 が存在するので, 明らかにx ∈ BN,M である.
よって, 確かに
Bf ⊆ ∪N,M>=1 BN,M である.
(1) と合わせて, R = Bf ∪ (R−Bf ) ⊆ (∪N,M>=1 BN,M ) ∪ (∪iAi) と
なる. すなわち,
R ⊆ (∪N,M>=1 BN,M ) ∪ (∪iAi) ・・・(2)
となる.」
としているけれども、Bfを無理数(R\Q)、R−Bfを有理数(Q)と考えて
Bf 無理数を、(内点を持つ)閉集合で被覆できているならば
R ⊆ (∪N,M>=1 BN,M ) (2’)
だけで終わっている。 ”∪ (∪iAi) ”の部分は、蛇足では?
つづく
259(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 08:20:11.67 ID:KgoytC9i(2/15) AAS
>>255
"実力が伴って無い"は、全く正しい(^^
が、https://www.axfc.net/u/3870548?key=Lipschitz 「定理1.7 (422 に書いた定理)」(>>145)とその証明不成立を主張したのは
私スレ主と、前スレで
401 名前:132人目の素数さん[] 投稿日:2017/12/22(金) 13:35:59.80 ID:zkh22JUH [1/2]
どっちもどっち
ID:KNjgsEZnはただの基地外
(引用終り)
と言った人の二人だけ
(>>180-183)の「定理1.7 (422 に書いた定理)」のどこがまずいかというと、
Bf自身と、Bfを被覆するBN,Mとの区別がついていないってことだ
Bfを被覆するBN,Mについて論じて、それが、即Bf自身についても成り立つと思ってしまった
この場合はそうじゃない。
補集合 R−Bf が、有理数Qのように稠密分散されている場合は、Bf自身も内点を持たないし開区間(a, b)など取れない(言われて見れば当たり前)
他の理論の被覆と混同したんだろう
集合の被覆では、被覆する集合と被覆される集合との関係は、他の理論の被覆とは違う(>>212)
ただ、間違いは間違いだから、そこははっきりさせないと数学じゃないが
この証明を書いた人は、おれより大分レベル上で、実力あるよ
また、証明は天才大数学者でも間違うことがあるから、ドンマイだ
>色々なトピックに手をだすのはあまり良くない
ここは、”雑談スレ”という定義だよ
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.047s