[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
204(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/06(土) 15:05:21.45 ID:sJCr7ecA(9/11) AAS
>>202 補足
おれがいまいち、定理1.7の証明で理解できないのは
(引用)
”仮定から, 高々可算無限個の閉集合Ai⊆Rが存在して, 各Aiは内点を持たず,
しかもR−Bf ⊆ ∪iAiが成り立つ・・・ (1)”
”Bf ⊆ ∪_N,M>=1 BN,M が成り立つ”
”BN,M は閉集合である. すると, (2) の右辺は可算無限個の閉集合の和ということになるので,
系1.4 により, あるi に対してAiは内点を持つか, もしくは, あるN,M >= 1 に対して
BN,M は内点を持つかのいずれかである. 各Aiは内点を持たないの
だったから, あるN,M >= 1 に対してBN,M が内点を持つことになる. 特に, (a, b)⊆BN,M なる開
区間(a, b) が取れる. f は(a, b) 上でリプシッツ連続であることを示す.”
(引用終り)
で、「特に, (a, b)⊆BN,M なる開区間(a, b) が取れる」の部分
開区間(a, b) が取れるのは、被覆する側の集合のBN,Mだろ?
で、R−BfがQのようにR中に稠密に分散している場合を考えると、Bf自身は内点を持たないし、区間(a, b) も取れないことは自明(参考>>128より)
で、被覆する方の集合のBN,Mにおいて、それが内点を持ち、そこに区間(a, b) が取れるとしても、
”それにより被覆される側のBfが同じ性質を持ち、区間(a, b) が取れる”とする証明がね〜、いまいち納得できないんだ(^^
被覆する方の集合のBN,Mは、もともと内点を持つ閉集合。それは、ベールのカテゴリ定理からすぐ出る
だが、それと、被覆される側の集合の性質とは無関係
但し、「S は内点を持たない閉集合の高々可算和で被覆できる」の場合に限っては
S側も、「内点を持たない閉集合の高々可算和」でなければならないという強い縛りができる
が、”内点を持つ閉集合閉集合の高々可算和で被覆できる”と緩和するならば、
被覆されるS側は、なんの制約も受けないように思えてきたが(第一可算的空間などから(>>122))・・、どう?
206: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/06(土) 15:11:49.48 ID:sJCr7ecA(10/11) AAS
>>204 訂正
が、”内点を持つ閉集合閉集合の高々可算和で被覆できる”と緩和するならば、
↓
が、”内点を持つ閉集合の高々可算和で被覆できる”と緩和するならば、
210(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/07(日) 10:14:00.91 ID:2l42E8SE(1/29) AAS
>>204
被覆(ひふく)か・・
https://ja.wikipedia.org/wiki/%E8%A2%AB%E8%A6%86
被覆
被覆(ひふく)
数学
・集合の被覆、和集合が集合全体となるような部分集合の集合
・良い被覆 (代数的位相幾何学)(英語版)、開被覆であって、被覆のすべての開集合や有限個の開集合のすべての交叉が可縮
・被覆 (代数学)(英語版)、代数的構造の、構造を保つように別の構造の上へと写る概念
・半順序集合の被覆関係(英語版)の対、あるいはそのような対の大きい方の元
・被覆空間、リーマン面と位相幾何学の理論
・(普遍/二重)被覆群(英語版)、群構造を持った被覆空間、理論物理学でも
・Cover, an equivalent set of constraints(英語版) in database theory(英語版)
219(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/07(日) 14:08:43.48 ID:2l42E8SE(9/29) AAS
>>204 戻る
>で、「特に, (a, b)⊆BN,M なる開区間(a, b) が取れる」の部分
>開区間(a, b) が取れるのは、被覆する側の集合のBN,Mだろ?
>で、R−BfがQのようにR中に稠密に分散している場合を考えると、Bf自身は内点を持たないし、区間(a, b) も取れないことは自明(参考>>128より)
>
>で、被覆する方の集合のBN,Mにおいて、それが内点を持ち、そこに区間(a, b) が取れるとしても、
>”それにより被覆される側のBfが同じ性質を持ち、区間(a, b) が取れる”とする証明がね〜、いまいち納得できないんだ(^^
(>>212より)"代数トポロジーでの被覆には、被覆する空間と被覆される側の空間との間に、連続全射 p : C → X の存在を条件としている(>>211)
しかし、単に 「集合の被覆」では、”和集合が集合全体となるような部分集合の集合”というだけで、被覆する集合と被覆される側の集合との間には、連続全射は要求されていない
そこが大きな違いだろうね"
この意識がすっかり抜けているように思う
被覆する方の集合BN,Mで証明されれば、即被覆される側の集合Bfでの証明が終わっていると勘違いしているのでは?
それと、被覆について、”稠密(dense)”の意識が希薄だと思う
例えば、定理1.7の証明中で
「補題1:5 を満たすN,M >= 1 が存在するので, 明らかにx ∈ BN,M である.
よって, 確かに
Bf ⊆ ∪N,M>=1 BN,M である.
(1) と合わせて, R = Bf ∪ (R−Bf ) ⊆ (∪N,M>=1 BN,M ) ∪ (∪iAi) と
なる. すなわち,
R ⊆ (∪N,M>=1 BN,M ) ∪ (∪iAi) ・・・(2)
となる.」
としているけれども、Bfを無理数(R\Q)、R−Bfを有理数(Q)と考えて
Bf 無理数を、(内点を持つ)閉集合で被覆できているならば
R ⊆ (∪N,M>=1 BN,M ) (2’)
だけで終わっている。 ”∪ (∪iAi) ”の部分は、蛇足では?
つづく
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.054s