[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
188
(3): 132人目の素数さん [sage] 2018/01/05(金) 11:40:11.25 ID:xCF0C8oo(1) AAS
おっちゃんです。
>>177
スレ主がコピペした、pdfの証明に則って話を進める。
実際は出来ないが、仮に系1.8 を否定して
有理数の点で不連続, 無理数の点で微分可能となるf : R → R が存在する
とすると、
(1):f はある開区間(a, b) の上でリプシッツ連続である.

(2):一方で, x ∈ Q とf の仮定により, f は点x で不連続である.
のどちらか1つは否定されることになる。
勿論、実際には系1.8 の否定は出来ず、論理的には(1)も(2)も正しい。
話は元に戻し、(2)を否定したとする。すると、xは有理点であって、かつfがxで連続となる。
これはfについての元の仮定に反し矛盾する。よって、(2)を否定することは不可能。
従って、(1)に限り否定される。その結果、
(1):f は開区間(a, b) の上でリプシッツ連続ではない.
となる。ここに、この開区間(a, b) とfはどちらも定理1.7 (422 に書いた定理) の証明で用いられる開区間(a, b) とf : R → R 同じである。
定理1.7 (422 に書いた定理) の証明と、その中で使っている補題1.5、補題1.6、系1.4の各証明では背理法は全く用いてなく、直接的に証明をしている。
そして、定理1.7 (422 に書いた定理) の証明の中では直接的にfが開区間(a, b) 上でリプシッツ連続なことを導いている。
この証明の中では開区間(a, b) は適当に選んで取っている。もし定理1.7 (422 に書いた定理) を否定すると、
他にも準備が必要になるが、その証明は大体結論から仮定へと順々に否定されて行き、
やがてfは開区間(a, b) 上でリプシッツ連続ではないことが示される。この結果は(1)に反することになる。
だから、定理1.7 (422 に書いた定理) の否定は出来ない。
189
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 20:13:29.17 ID:miqaDy4s(11/12) AAS
>>188
おっちゃん、どうも、スレ主です。
レスありがとう(^^

>>180より)
”定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間(a, b) の
上でリプシッツ連続である.”

この定理1.7の面白さは
”系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない.”(>>184
を著しく拡張しているところだ

つまり、系1.8において、
1)不連続→リプシッツ連続でない
2)微分可能→リプシッツ連続
3)稠密:有理数と無理の稠密性→もっと一般な稠密性(但し、片方は可算無限濃度限定)

の3つの特性で、系1.8を拡張したものが定理1.7になっているってこと

これに匹敵する結果は、>>41-42に書いたが
”Let f:R --> R be such that the sets of points at which f is continuous and discontinuous are each dense in R.
Let E be the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite.
Then E is co-meager in R (i.e. the complement of a first category set).
This was proved in H. M. Sengupta and B. K. Lahiri, "A note on derivatives of a function",
Bulletin of the Calcutta Mathematical Society 49 (1957), 189-191 [MR 20 #5257; Zbl 85.04502]. ”

つまり、一般な稠密性(但し、H. M. Sengupta and B. K. Lahiriは、可算非可算に関係なく)
”the sets of points at which f is continuous and discontinuous are each dense in R.”なのだが
しかし、この discontinuous →リプシッツ連続でないという、上記1)の特性で、定理1.7は拡張されているのだ

そこが、この定理1.7の面白さであり、斬新さだ
成り立てばだがね(^^
192
(1): 132人目の素数さん [sage] 2018/01/06(土) 07:02:33.16 ID:PzQY7Vpj(1/3) AAS
おっちゃんからもらったスレ主への連絡がある。>>188
>従って、(1)に限り否定される。その結果、
>(1):f は開区間(a, b) の上でリプシッツ連続ではない.
>となる。ここに、この開区間(a, b) とfはどちらも定理1.7 (422 に書いた定理) の証明で用いられる開区間(a, b) とf : R → R 同じである。
の部分は
>従って、(1)に限り否定される。その結果、
>「(3)」:f は開区間(a, b) の上でリプシッツ連続ではない.
>となる。ここに、この開区間(a, b) とfは「それぞれ」定理1.7 (422 に書いた定理) の証明で用いられる開区間(a, b) とf : R → R 「に一致させることが出来る」。
と訂正して読んでほしいとのことである。
これは>>188で分からなかったスレ主の読解力を考慮した訂正とのことである。

by 魔人プー
193
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/06(土) 12:18:28.10 ID:sJCr7ecA(1/11) AAS
>>192
どうも。スレ主です。レスありがとう。訂正を適用すると
>>188 訂正し引用)
スレ主がコピペした、pdfの証明に則って話を進める。
実際は出来ないが、仮に系1.8 を否定して
有理数の点で不連続, 無理数の点で微分可能となるf : R → R が存在する

とすると、
(1):f はある開区間(a, b) の上でリプシッツ連続である.

(2):一方で, x ∈ Q とf の仮定により, f は点x で不連続である.
のどちらか1つは否定されることになる。

勿論、実際には系1.8 の否定は出来ず、論理的には(1)も(2)も正しい。
話は元に戻し、(2)を否定したとする。すると、xは有理点であって、かつfがxで連続となる。
これはfについての元の仮定に反し矛盾する。よって、(2)を否定することは不可能。

従って、(1)に限り否定される。その結果、
「(3)」:f は開区間(a, b) の上でリプシッツ連続ではない.
となる。ここに、この開区間(a, b) とfは「それぞれ」定理1.7 (422 に書いた定理) の証明で用いられる開区間(a, b) とf : R → R 「に一致させることが出来る」。

定理1.7 (422 に書いた定理) の証明と、その中で使っている補題1.5、補題1.6、系1.4の各証明では背理法は全く用いてなく、直接的に証明をしている。
そして、定理1.7 (422 に書いた定理) の証明の中では直接的にfが開区間(a, b) 上でリプシッツ連続なことを導いている。
この証明の中では開区間(a, b) は適当に選んで取っている。もし定理1.7 (422 に書いた定理) を否定すると、
他にも準備が必要になるが、その証明は大体結論から仮定へと順々に否定されて行き、
やがてfは開区間(a, b) 上でリプシッツ連続ではないことが示される。この結果は(1)に反することになる。
だから、定理1.7 (422 に書いた定理) の否定は出来ない。
(引用終り)

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.035s