[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
184
(7): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 00:08:43.66 ID:miqaDy4s(7/12) AAS
>>183 つづき

系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない.

証明
存在すると仮定する. 定理1.7 のBf について,
R − Q = (無理数全体) = (f の微分可能点全体) ⊆ Bf
が成り立つので,
R − Bf ⊆ Q = ∪p ∈Q {p} ・・・(1)
である. ここで, 1 点集合{p} (p ∈ Q) は全部で可算無限個あり, 各{p} は内点を持たない閉集合であ
るから, (1) の右辺は内点を持たない閉集合の可算和である. よって, 定理1.7 が使えて, f はある開
区間(a, b) の上でリプシッツ連続である. 特に, f は(a, b) の上で連続である (2) さて, Q はR 上
で稠密だから, (a, b) ∩ Q ≠ Φ である. そこで, x ∈ (a, b) ∩ Q を何でもいいから1 つ取る. (2) より,
f は点x で連続であるが, 一方で, x ∈ Q とf の仮定により, f は点x で不連続である. これは矛
盾. よって, 題意が成り立つ.

つづく
185
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 00:09:56.38 ID:miqaDy4s(8/12) AAS
>>184 つづき

補足定理1.7 の証明のポイントはもちろん, BN,M の作り方にある. x ∈ Bf を任意に取る. このと
き, 補題1.5 の途中計算により, ある正整数N,M >= 1 が存在して
∀y ∈ R [ |y − x| < 1/M → |f(y) − f(x)| <= N|y − x|]
が成り立つのだった. よって,
BN,M := {x ∈ R | ∀y ∈ R [|y − x| < 1/M → |f(y) − f(x)| <= N|y − x|] }
と置いても, Bf ⊆ ∪N ,M>=1BN,M は成立する. ただし, これだとBN,M が閉集合になるとは限らな
くなる. 以下でこのことを見る. BN,M が閉集合になることを示したい. x ∈ R とxi ∈ BN,M (i >=
1) はxi → x を満たすとする. このとき, x ∈ BN,M が成り立つことを示せばよい. そのためには,
∀y ∈ R[|y − x| <1/M → |f(y) − f(x)| <= N|y − x|]
を示せばよい. さて,
|y − x| <1/M
が成り立つようなy ∈ R を任意に取る. xi → x に注意して, i が十分大きければ
|y − xi| <1/M
である. そのようなi を任意に取ると, xi ∈ BN,M に注意して, BN,M の定義から|f(y) − f(xi)| <=
N|y −xi| が成り立つ. i → +∞とすると, もしf が点x で連続ならば, f(xi) → f(x) となるので,
|f(y)−f(x)| <= N|y −x| となる. しかし, f が点x で連続でない場合は, f(xi) → f(x) が成り立つ
とは限らないので, |f(y) − f(x)| <= N|y − x| が出て来ない(工夫すれば出るかもしれないが, 自分
は出せなかった). この時点で, BN,M が閉であることの証明に失敗する. ではどうするかというと,
f(xi) が出現しないようにすればよい. そのためには, そもそもf(x) が出現しないようにすればよ
い. そのためには,
x − 1/M < y < x < z < x +1/M

つづく
189
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 20:13:29.17 ID:miqaDy4s(11/12) AAS
>>188
おっちゃん、どうも、スレ主です。
レスありがとう(^^

>>180より)
”定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間(a, b) の
上でリプシッツ連続である.”

この定理1.7の面白さは
”系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない.”(>>184
を著しく拡張しているところだ

つまり、系1.8において、
1)不連続→リプシッツ連続でない
2)微分可能→リプシッツ連続
3)稠密:有理数と無理の稠密性→もっと一般な稠密性(但し、片方は可算無限濃度限定)

の3つの特性で、系1.8を拡張したものが定理1.7になっているってこと

これに匹敵する結果は、>>41-42に書いたが
”Let f:R --> R be such that the sets of points at which f is continuous and discontinuous are each dense in R.
Let E be the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite.
Then E is co-meager in R (i.e. the complement of a first category set).
This was proved in H. M. Sengupta and B. K. Lahiri, "A note on derivatives of a function",
Bulletin of the Calcutta Mathematical Society 49 (1957), 189-191 [MR 20 #5257; Zbl 85.04502]. ”

つまり、一般な稠密性(但し、H. M. Sengupta and B. K. Lahiriは、可算非可算に関係なく)
”the sets of points at which f is continuous and discontinuous are each dense in R.”なのだが
しかし、この discontinuous →リプシッツ連続でないという、上記1)の特性で、定理1.7は拡張されているのだ

そこが、この定理1.7の面白さであり、斬新さだ
成り立てばだがね(^^
267
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 16:28:25.09 ID:KgoytC9i(6/15) AAS
>>259 追加

追加を書いておく

「系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない.」(>>184
このような”f : R → R は存在しない”という理由は、
無理数側にあって、 無理数側に微分不可のみならず、>>245にあるように
”any specified pointwise modulus of continuity condition” & ”at least one of the four Dini derivates of f is infinite”
なる集合Eがあって、”E is co-meager in R (i.e. the complement of a first category set).”となってしまうこと

だから、微分不可の集合は、「高々可算ではおさまらず、非可算濃度になる」と。それが”系1.8 の関数f : R → Rが存在しない”理由なのだ(決して”開区間(a, b)”が存在するからではない )

つづく
289
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/09(火) 07:32:41.21 ID:Xw3gWI4S(2/8) AAS
>>284
>B_N,Mについて言うだけで十分ですよ?

不十分でしょ?
R−Bf側の検討が是非必要でしょう?
R−Bfが、QのようにR中に稠密分散しているとき、Bfは決して、開区間(a, b) を持つことはありません

Bfの被覆空間として、B_N,Mを作って、この中に開区間(a, b) を作った
まあ、この論理を認めるとして

それなら、「系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R 」(>>184)で
その証明中の

R − Q = (無理数全体) = (f の微分可能点全体) ⊆ Bf
R − Bf ⊆ Q = ∪p ∈Q {p} ・・・(1)

で、同じように、Bf(無理数全体)の被覆空間として、B_N,Mを作って、この中に開区間(a, b) を作れば良い
この論理を認めるなら、矛盾は導けない
298
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/09(火) 10:10:47.09 ID:zTuDuk+z(3/6) AAS
>>291
>>・定義1.2 (X,O) は、「S は内点を持たない閉集合の高々可算和で被覆できる」の定義のために使った
>定義になっていないと思われる。「もしかするとこういうSを含むXがあるかもよ」と言っている以上の意味を持たない。

いやいや
そもそも、定義とは?
まあ、平たく言えば、繰り返し使われる概念を、ある言葉や記号に置き換えて
表現を簡素にするために、用いられるもの
とでもしますか?

で、
>>178より)
定義1.2 (X,O) は位相空間とする. S ⊆ X は, 高々可算無限個の閉集合Fi ⊆ X が存在して,
・ 各Fiは内点を持たない,
・ S ⊆∪i Fi
が成り立っているとする. このとき,「S は内点を持たない閉集合の高々可算和で被覆できる」と書
くことにする.
(引用終わり)

”「S は内点を持たない閉集合の高々可算和で被覆できる」と書くことにする”で
直前4行の表現を、一言にまとめたわけだ

<逐条解説>
(いまの問題では)
X=R,
O:通常の距離空間の位相
閉集合:閉区間(内点を持つ)又は1点(内点を持たない)
高々可算和:1個から加算無限までの和


1点a:1点(内点を持たない)で被覆できる
Q(有理数):Q = ∪p ∈Q {p} ・・・(1)(詳細>>184の通り)
(終わり)

「もしかするとこういうSを含むXがあるかもよ」でなく・・、
「こういうSがあって、それを定義して、以下”xyz・・”と表現することにして、証明を簡潔にしますよ」ということでしょう
576
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/19(金) 07:43:03.51 ID:Nl8Dprui(1/18) AAS
>>571
>おっちゃん、稠密(下記)を理解しているかい?
>R中のQは稠密だから、無理数のみの開区間や有理数のみの開区間は取れないことを!(^^

<文学では>
「"The Sound of Silence" を"沈黙の音"とそのままに訳すと意味が通じません」
「松尾芭蕉 『古池や蛙飛び込む水のおと』 この俳句では、蛙がケロケロでもなクワックワッでもなく、古池に飛び込ませることで「静けさ」の音が伝わってくる素晴らしい作品です。」

<数学では>
文学のような矛盾は許されない。R中のQは稠密。
にも関わらず、「f はある開区間の上でリプシッツ連続である」(>>560)とする。
そういう命題の立て方は、許されない
気付いてみれば、当たり前のこと
系1.8(>>184)の背理法との関係で、脳波を狂わされていたよ〜(^^

(参考)
http://kiyo-furu.com/silence.html
The Sound of Silence−「沈黙の世界」〜訳と解釈 (2011/12/5,12/29,2012/2/6,4/17更新) kifuruの長文系ページ
(抜粋)
1.タイトルの意味
The Sound of Silence   沈黙の世界
"The Sound of Silence" を"沈黙の音"とそのままに訳すと意味が通じません。
(引用終り)

https://ja.wikipedia.org/wiki/%E5%8F%A4%E6%B1%A0%E3%82%84%E8%9B%99%E9%A3%9B%E3%81%B3%E3%81%93%E3%82%80%E6%B0%B4%E3%81%AE%E9%9F%B3
古池や蛙飛びこむ水の音
(抜粋)
芭蕉が蕉風俳諧を確立した句とされており[1][2]、芭蕉の作品中でもっとも知られているだけでなく、すでに江戸時代から俳句の代名詞として広く知られていた句である[3]。
(引用終り)

https://nippon.fr/ja/archives/3747
フランス語豆知識 いろんな静けさ NOVEMBER 17, 2010 AKI Le vrai Japon. フランス発見 | Nippon.fr

おもしろいのは擬態語。音を出さないものについて字を当てて表現する。

ポカポカの日だ。
頭がガンガンする。
バラバラに散らかっている。

外国人にこういった日本語を教えると結構面白がってくれます。ツルツル、パンパン、トントン、ピョンピョン、カンカン、ザーザー、テクテク、カサカサ、ドスンドスン、 時に、ボーっと、シーンと、ポワーンと・・・・、なんだこの日本語!?と。
つづく
643
(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/21(日) 08:41:25.02 ID:KXw6ILfu(1/5) AAS
>>635-641
寒中お見舞い申し上げます!(^^
ご苦労さんです(^^

年末年始に自得したのかと思ったが
そうでは無かったのかい?(^^

”「f はある開区間の上でリプシッツ連続である.」という表現のままで完全に正しい。
「Bf内」という余計な条件は全く必要ない。”(>>636より)

だから、「Bf内」という解釈でいいだろ? 別に表現する必要もなく

で、(>>184
”系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない.
証明
存在すると仮定する. 定理1.7 のBf について,
R − Q = (無理数全体) = (f の微分可能点全体) ⊆ Bf
が成り立つので,
R − Bf ⊆ Q = ∪p ∈Q {p} ・・・(1)
である. ここで, 1 点集合{p} (p ∈ Q) は全部で可算無限個あり, 各{p} は内点を持たない閉集合であ
るから, (1) の右辺は内点を持たない閉集合の可算和である. よって, 定理1.7 が使えて, f はある開
区間(a, b) の上でリプシッツ連続である. 特に, f は(a, b) の上で連続である (2) さて, Q はR 上
で稠密だから, (a, b) ∩ Q ≠ Φ である. そこで, x ∈ (a, b) ∩ Q を何でもいいから1 つ取る. (2) より,
f は点x で連続であるが, 一方で, x ∈ Q とf の仮定により, f は点x で不連続である. これは矛
盾. よって, 題意が成り立つ.”

だったろ? 「有理数の点で不連続」だから、この集合(「有理数の点」)だけを見れば、R内で”内点を持たない閉集合の高々可算和で被覆できる”でしょ?
だが、明らかに、有理数の点はR内で稠密だから、定理1.7の適用外

反例にならないというが、それをいうためには、”R−Bf が内点を持たない閉集合の高々可算和で被覆できる”を否定する証明を別にしなければならない
それは、”R−Bf が内点を持たない閉集合の非可算和でしか被覆できない”という方向でしか、証明できない。(「ある開区間の上でリプシッツ連続である」とは証明できない)

”R−Bf が内点を持たない閉集合の非可算和でしか被覆できない”をいう証明は、系1.8の証明そのものでしかない!

以上
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.035s