[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
131
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/03(水) 21:34:49.94 ID:fcJ2W/Es(5/8) AAS
>>130 つづき

性質
・集合の境界は閉である。
・集合の境界は補集合の境界に等しい: ∂S = ∂(Sc)。
これらのことから以下のようなことが従う。

・p が集合の境界点となる必要十分条件は、p の任意の近傍が少なくとも一つその集合の点を含みかつ少なくとも一つその集合の補集合の点を含むことである。
・集合が閉であることの必要十分条件は、その集合が自身の境界を包含することであり、開であることの必要十分条件はその集合が自身の境界と交わりを持たないことである。
・集合の閉包はその集合自身とその境界との和に等しい:Cl(S) = S ∪ ∂S。
・集合の境界が空であることの必要十分条件は、その集合が開かつ閉 (clopen) であることである。
・Rn における任意の閉集合は、適当な集合の境界になっている。

S の各点は内点であるか境界点であるかのいずれかである。また、S の各点は集積点であるか孤立点であるかのいずれかである。同様に、S の各境界点は集積点であるか孤立点であるかのいずれかである。Rnの部分集合の孤立点は常に境界点である。

つづく
132: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/03(水) 21:35:57.77 ID:fcJ2W/Es(6/8) AAS
>>131 つづき

境界の境界
如何なる集合 S についても ∂S ⊇ ∂∂S が成立する。ここで等号は S の境界が内点を持たないとき、かつそのときに限り成り立つ。
これは S が開または閉であるときにも正しい。任意の集合の境界が閉となることから、∂∂S = ∂∂∂S は如何なる集合 S についても成り立つ。したがって、境界をとる操作は弱い意味で冪等である。特に、集合の境界の境界はふつう空でない。

多様体や単体および単体的複体の境界に関する議論では、しばしば境界の境界はつねに空であるという主張を目にすることもあるだろう。
実際、特異ホモロジーの構成はこの事実に決定的に基づいている。この明らかな不整合に対する説明としては、この項目の主題となる位相的な境界と、多様体や単体的複体の境界とは少し異なる概念であるからということになる。
例えば閉円板をそれ自身位相空間とみなしたときの位相的な境界は空集合だが、円板自身を多様体と見なしたときの境界は円板自身の円周である。
(引用終り)
以上
133: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/03(水) 21:39:37.82 ID:fcJ2W/Es(7/8) AAS
>>131 補足

>・集合の境界は補集合の境界に等しい: ∂S = ∂(Sc)。

Qの境界がR。
故に、Qの補集合のR \ Qの境界も、R。
だが、Rは、全体集合でもある!(^^
207
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/06(土) 15:37:58.41 ID:sJCr7ecA(11/11) AAS
>>205
いやー、おっしゃる通り
おれスレ主は、そうとうバカで不勉強だな(^^

>>128より)
”Qについての、(^i:内部、^e:外部、^f:境界、^a:閉包)は
Q^i = Φ, Q^e = Φ, Q^f = R, Q^a = R.

R \ Qについての、(^i:内部、^e:外部、^f:境界、^a:閉包)は
(R \ Q)^i = Φ, (R \ Q)^e =Φ, (R \ Q)^f = R, (R \ Q)^a = R.

つまりは、R内に稠密分散するQは、内部も外部もΦ(空)で、境界と閉包はRそのものになる
同様に、RからQを除いたR \ Qも、内部も外部もΦ(空)で、境界と閉包はRそのものになる”

>>130より)
”内点を持たない稠密集合の境界はその集合の閉包に一致する”

>>131より)
”p が集合の境界点となる必要十分条件は、p の任意の近傍が少なくとも一つその集合の点を含みかつ少なくとも一つその集合の補集合の点を含むことである。”
(引用終り)

外しているかも知れないが、これを、日常の例えで言えば
光学顕微鏡の分解能では、原子レベルの入り組んだ構造は、見えないってことかな

ε近傍という内点を持つ分解能で、内点を持たない稠密集合の境界を探しても、
ε近傍の分解能ではある集合Sの点とその補集合S ̄の点と、常に両方が見える

そういう理解で当たらずとも遠からずかな?(^^
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.035s