[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
129(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/03(水) 21:33:20.09 ID:fcJ2W/Es(3/8) AAS
>>128 つづき
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q11168182641
(抜粋)
katakana121225さん2016/12/19 yahoo
1次元のユークリッド空間Rでの有理数Qの内部、外部、境界はどうなるのですか?
解説も出来ればお願いします
ベストアンサーに選ばれた回答 clicky_clicky_clicky_clickyさん 2016/12/19
一般に, 内点・外点・境界点の定義 (近傍による定義) から, 距離空間 X の点は X の部分集合 A にたいして内点または外点または境界点のいずれかです. (※排他的 : 同時に2種類以上は無い)
有理数 Q の任意の点の近傍 (ε-近傍) には, 無理数の点, すなわち, 有理数 Q の補集合 R-Q の点が含まれます. したがって, Q の任意の点は Q の境界点 (同時に R-Q の境界点) です.
無理数 R-Q の任意の点の近傍 (ε-近傍) には, 有理数の点, すなわち, 無理数の補集合 Q の点が含まれます. したがって, 無理数 R-Q の任意の点は R-Q の境界点 (同時に Q の境界点) です.
以上, 先に述べたとおり, R=Q∪(R-Q) の任意の点は, Q の境界点であり, (排他的な内点・外点・境界点の定義から) Q の内点も外点も存在しません. すなわち
Q の内部 (内点全体) = 空集合
Q の外部 (外点全体) = 空集合
Q の境界 (境界点全体) = R
(引用終り)
つづく
130(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/03(水) 21:34:15.76 ID:fcJ2W/Es(4/8) AAS
>>129 つづき
https://ja.wikipedia.org/wiki/%E5%A2%83%E7%95%8C_(%E4%BD%8D%E7%9B%B8%E7%A9%BA%E9%96%93%E8%AB%96)
境界 (位相空間論)
(抜粋)
一般位相において位相空間 X の部分集合 S の境界(きょうかい、英語: boundary, frontier)とは、S の中からも外からも近づくことのできる点の全体の成す X の部分集合のことである。
もうすこし形式的に言えば、S の触点(閉包に属する点)のうち、S の内点(開核に属する点)ではないものの全体の成す集合のことである。S の境界に属する点のことを、S の境界点(boundary point) と呼ぶ。S が境界を持たない (boundaryless) とは、S が自身の境界を包含しないこと、あるいは同じことだが境界点がひとつも S に属さないことをいう[1]。
集合 S の境界を表すのに、bd(S), fr(S), ∂S[2] のような記法がしばしば用いられる。代数的位相幾何学における境界 (boundary) の概念との区別のため、ここでいう境界に対応する語として "boundary" の代わりに "frontier" を用いることがある(たとえば松坂『集合・位相入門』[3])。
集合 S の境界の連結成分のことを、S の境界成分 (boundary component) という。
例
実数直線 R に通常の位相(つまり、開区間を開基とする位相)を考えると、たとえば
・∂Q = R
・∂(Q ∩ [0,1]) = [0,1]
などが成立する。最後のふたつの例は、内点を持たない稠密集合の境界はその集合の閉包に一致するという一般的な事実を説明するものになっている。
有理数全体の集合に通常の位相(R の部分位相空間としての位相)を考えた位相空間の中では、a が無理数であるときの区間 (?∞, a) の境界は空集合である。
集合の境界というのは位相的な概念であり、集合に入れる位相を変えれば(同じ集合であっても)何が境界であるかが変わってくる。
つづく
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.032s