[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
113(2): 132人目の素数さん [] 2018/01/02(火) 13:00:11.03 ID:okX91MtS(5/8) AAS
>>111
>1.Qは、「内点を持たない閉集合の高々可算和で被覆できる」
はい
>2.R\Qは、「内点を持たない閉集合」では、被覆できない。
高々可算個ではできそうにありませんね
>(「内点を持つ開集合の高々可算和で被覆できる」? 当たり前か・・)
それはムリです
115(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/02(火) 13:06:42.96 ID:p6PjQh75(11/14) AAS
>>113
ご丁寧にレスありがとうございます。ちょっと、考えてみます(^^
お手間を取らせて悪いが
で、「422に書いた定理」中の定理1.7の証明中で
「系1.4 により, あるi に対してAiは内点を持つか, もし
くは, あるN,M >= 1 に対してB_N,M は内点を持つかのいずれかである. 各Aiは内点を持たないの
だったから, あるN,M >= 1 に対してB_N,M が内点を持つことになる.
特に, (a, b) ⊆ B_N,M なる開区間(a, b) が取れる.」
の
B_N,M が内点を持つことになる.
↓
(a, b) ⊆ B_N,M なる開区間(a, b) が取れる.
にギャップないですか?
つまり、R−BfがQのような稠密分散集合で、よって、BfがR\Qのような集合になりますと
このような場合、「内点を持つから、開区間(a, b) が取れる」と言えますか?
120(1): 132人目の素数さん [] 2018/01/02(火) 18:14:00.10 ID:okX91MtS(7/8) AAS
>>113
>>2.R\Qは、「内点を持たない閉集合」では、被覆できない。
>高々可算個ではできそうにありませんね
ベールのカテゴリー定理より高々可算個では無理と分かりますね
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.034s