[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
1(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/27(水) 21:14:10.23 ID:JqNELMW3(1/12) AAS
“現代数学の系譜 物理工学雑談 古典ガロア理論も読む”
数学セミナー時枝記事は、過去スレ39 で終わりました。
39は、別名「数学セミナー時枝記事の墓」と名付けます。
皆さまのご尽力で、伝統あるガロアすれは、
過去、数学板での勢いランキングで、常に上位です。(勢い1位の時も多い(^^ )
このスレは、現代数学のもとになった物理工学の雑談スレとします。たまに、“古典ガロア理論も読む”とします。
それで良ければ、どうぞ。
後でも触れますが、基本は私スレ主のコピペ・・、まあ、言い換えれば、スクラップ帳ですな〜(^^
話題は、散らしながらです。時枝記事は、気が向いたら、たまに触れますが、それは私スレ主の気ままです。
“時枝記事成立”を支持する立場からのカキコや質問は、基本はスルーします。それはコピペで流します。気が向いたら、忘れたころに取り上げます。
なお、
小学レベルとバカプロ固定
サイコパスのピエロ(不遇な「一石」https://textream.yahoo.co.jp/personal/history/comment?user=_SrJKWB8rTGHnA91umexH77XaNbpRq00WqwI62dl 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets (Yahoo!でのあだ名が、「一石」)
(参考)http://blog.goo.ne.jp/grzt9u2b/e/c1f41fcec7cbc02fea03e12cf3f6a00e サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日
High level people
低脳幼稚園児のAAお絵かき
お断り!
小学生がいますので、18金よろしくね!(^^
High level people は自分達で勝手に立てたスレ28へどうぞ!sage進行推奨(^^;
また、スレ43は、私が立てたスレではないので、私は行きません。そこでは、私はスレ主では無くなりますからね。このスレに不満な人は、そちらへ。 2chスレ:math
旧スレが512KBオーバー(又は間近)で、新スレ立てる
(スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。関連のアーカイブの役も期待して。)
395: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 16:37:47.93 ID:clSPRjXH(8/11) AAS
病的関数で検索すると、下記がなぜかヒット。貼っておく。なお、文字化けご容赦(^^
https://www.jstage.jst.go.jp/article/sugaku1947/50/1/50_1_1/_article/-char/ja/
https://www.jstage.jst.go.jp/article/sugaku1947/50/1/50_1_1/_pdf
「やさしい」ゼータ関数について 伊吹山 知義, 齋藤 裕 数学 / 50 巻 (1998) 1 号
(抜粋)
この論説の目的は種々のゼータ関数の中には,易しい表示を持つものが通常信じられているより
もずっと多いことを解説することにある。すなわち概均質ベクトル空間のゼータ関数や保型形式の
ゼータ関数の中には,定義のみではその易しさがわからないが,算術的知識を総動員して計算する
と既知の関数になるものが思いがけず多いと言うことを説明したい。前半では数学的な正確さより
も流れに重点を置いて書く.
1) 2種類のゼータ関数
ちょっと冗談めくが,ゼータ関数には2種類あると思うようになった.1つは「やさしいゼータ
関数」もう1つは「むつかしいゼータ関数」である.とくにこれらの定義を正確に与えようという
わけではないが,その気持ちは徐々に説明していきたい.
数列{an}と複素数sに対し,Σ 一1α。η}8なる級数をDirichlet級数という。{an}のとりかたに
よってはこの級数はかなり良い性質をもつ.たとえばζ(S)= n一、n-Sとおくと次がなりたっ.
(1) ζ(S)はRe(S)>1で絶対収束しsさらに全S平面に有理型に解析接続される。
(2) ζ(S)は関数等式を持つ.すなわちξ(S)=π}8/2F(S/2)ζ(S)とおくとξ(1-S)=ξ(s)をみ
たす。
(3) ζ(S)はEuler積をもつ.すなわちζ(S)=llp(1-p-8)一1(pは素数をわたる。)
このζ(S)をRiemannのゼータ関数という.ζ(S)をモデルとして,上の(1),(2),(3)ないしは
その一部をみたすようなDirichlet級数が数多く考えられてきた。それらは適当な形容詞つきで,
ゼータ関数ないしはL関数の名称で呼ばれる.ここで{an}は当然何らかの算術的に意味のある良
い定義がなされているわけであるが,これは別にan自身が非常に具体的な公式によって記述でき
るということを意味するわけではない.とりあえずanのやさしい具体的な公式があるときに,漠
然と「やさしいゼータ関数」と呼ぶことにしよう。この観点から言えば,Riemannのゼータ関数は
やさしいゼータの典型である.
(引用終わり)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.033s