[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 http://rio2016.5ch.net/test/read.cgi/math/1514376850/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
81: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/01(月) 17:16:33.36 ID:dCRrvhl7 >>80 つづき (以前のスレから関連抜粋) スレ46 https://rio2016.5ch.net/test/read.cgi/math/1510442940/398 <引用> http://www.unirioja.es/cu/jvarona/downloads/Differentiability-DA-Roth.pdf DIFFERENTIABILITY OF A PATHOLOGICAL FUNCTION, DIOPHANTINE APPROXIMATION, AND A REFORMULATION OF THE THUE-SIEGEL-ROTH THEOREM JUAN LUIS VARONA 2009 This paper has been published in Gazette of the Australian Mathematical Society, Volume 36, Number 5, November 2009, pp. 353{361. (抜粋) So, in this paper we are going to analyze the dierentiability of the real function fν(x) =0 if x ∈ R \ Q, or =1/q^ν if x = p/q ∈ Q, irreducible, for various values of ν ∈ R. Theorem 1. For ν > 2, the function fν is discontinuous (and consequently not dierentiable) at the rationals, and continuous at the irrationals. With respect the dierentiability, we have: (a) For every irrational number x with bounded elements in its continued fraction expansion, fν is differentiable at x. (b) There exist infinitely many irrational numbers x such that fν is not differentiable at x. Moreover, the sets of numbers that fulfill (a) and (b) are both of them uncountable. Theorem 2. For ν > 2, let us denote Cν = { x ∈ R : fν is continuous at x }, Dν = { x ∈ R : fν is dierentiable at x }. Then, the Lebesgue measure of the sets R \ Cν and R \ Dν is 0, but the four sets Cν, R \ Cν, Dν, and R \ Dν are dense in R. (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1514376850/81
82: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/01(月) 17:17:30.46 ID:dCRrvhl7 >>81 つづき で、”a nonempty open set”(ordinary open neighborhood )が、結構重要キーワードじゃないかな? R中のQのように稠密分散で、 R\Qは、”a nonempty open set”の集まりになるけれども (似た状況は、上記の「the Lebesgue measure of the sets R \ Cν and R \ Dν is 0, but the four sets Cν, R \ Cν, Dν, and R \ Dν are dense in R.」とある通りで) 「422に書いた定理」の系1.8の背理法証明に使えるような、区間(a, b)が取れると言えるかどうかだ? 以上 http://rio2016.5ch.net/test/read.cgi/math/1514376850/82
312: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/09(火) 21:01:39.68 ID:Xw3gWI4S >>289 自己レス R−Bf側の検討が是非必要と思うんだよね〜(^^ ちょっと自分の頭の整理を兼ねて書くと・・ https://ja.wikipedia.org/wiki/%E3%83%88%E3%83%9E%E3%82%A8%E9%96%A2%E6%95%B0 トマエ関数 で、(>>81より) fν(x) =0 if x ∈ R \ Q, or =1/q^ν if x = p/q ∈ Q, irreducible, for various values of ν ∈ R. ここで、ν=1が、トマエ関数。ν=0で ”=1 if x = p/q ∈ Q”で、ディリクレの関数 https://ja.wikipedia.org/wiki/%E3%83%87%E3%82%A3%E3%83%AA%E3%82%AF%E3%83%AC%E3%81%AE%E9%96%A2%E6%95%B0 トマエ函数は、全ての有理数の点で不連続だが、全ての無理数の点で連続である。ディリクレ函数として知られる、有理数全体の集合の指示函数は至る所不連続である。 (https://ja.wikipedia.org/wiki/%E4%B8%8D%E9%80%A3%E7%B6%9A%E6%80%A7%E3%81%AE%E5%88%86%E9%A1%9E 関数の不連続点の集合 より) で、無理数側 ”=0 if x ∈ R \ Q”は、トマエ、ディリクレ、両関数で不変 さらに、ν>2になると、多くの無理数点で微分可能になる。これも、無理数側は不変で、有理数側のみが変化している(詳細は下記) https://kbeanland.files.wordpress.com/2010/01/beanlandrobstevensonmonthly.pdf Modifications of Thomae’s function and differentiability, (with James Roberts and Craig Stevenson) Amer. Math. Monthly, 116 (2009), no. 6, 531-535. つづく http://rio2016.5ch.net/test/read.cgi/math/1514376850/312
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.033s