[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 http://rio2016.5ch.net/test/read.cgi/math/1514376850/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
76: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/01(月) 17:13:34.44 ID:dCRrvhl7 >>74 つづき (上記の関連参考:出典URL) http://www.math.wvu.edu/~kcies/ Krzysztof Chris Ciesielski, Ph.D. Professor of Mathematics at Department of Mathematics, West Virginia University and Adjunct Professor at Medical Image Processing Group, Dept. of Radiology, Univ. of Pennsylvania. (抜粋) Books: (with L. Larson and K. Ostaszewski) I-density continuous functions, Memoirs of the AMS vol. 107 no 515, 1994; MR 94f:54035. (引用終り) https://www.amazon.co.jp/I-Density-Continuous-Functions-American-Mathematical/dp/0821825798 I-Density Continuous Functions (Memoirs of the American Mathematical Society) (英語) Krzysztof Ciesielski (著),? Lee Larson (著),? Krzysztof Ostaszewski (著) 1994/1/1 http://www.jstor.org/stable/44151978?seq=1#page_scan_tab_contents JOURNAL ARTICLE I-density Continuous Functions Krzysztof Ciesielski, Lee Larson and Krzysztof Ostaszewski Real Analysis Exchange Vol. 15, No. 1 (1989-90), pp. 13-15 Published by: Michigan State University Press (終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1514376850/76
77: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/01(月) 17:14:10.20 ID:dCRrvhl7 >>76 つづき (参考:用語解説) https://en.wikipedia.org/wiki/Ideal_(set_theory) Ideal (set theory) (抜粋) In the mathematical field of set theory, an ideal is a collection of sets that are considered to be "small" or "negligible". Every subset of an element of the ideal must also be in the ideal (this codifies the idea that an ideal is a notion of smallness), and the union of any two elements of the ideal must also be in the ideal. More formally, given a set X, an ideal I on X is a nonempty subset of the powerset of X, such that: 1. Φ ∈ I 2.if A∈ I and B⊆ A, then B∈ I, and 3.if A,B∈ I, then A ∪ B∈ I Some authors add a third condition that X itself is not in I; ideals with this extra property are called proper ideals. Ideals in the set-theoretic sense are exactly ideals in the order-theoretic sense, where the relevant order is set inclusion. Also, they are exactly ideals in the ring-theoretic sense on the Boolean ring formed by the powerset of the underlying set. Contents 1 Terminology 2 Examples of ideals 2.1 General examples 2.2 Ideals on the natural numbers 2.3 Ideals on the real numbers 2.4 Ideals on other sets 3 Operations on ideals 4 Relationships among ideals 5 See also 6 References (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1514376850/77
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.038s