[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 http://rio2016.5ch.net/test/read.cgi/math/1514376850/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
71: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/01(月) 17:11:20.87 ID:dCRrvhl7 >>70 つづき Theorem 1.1.4. Let J be a σ-ideal and f : R → R. The following statements are equivalent. (i): The function f is J -continuous J -a.e. (ii): There exists a set K ∈ J such that the restricted function f|Kc is continuous. Furthermore, if the ideal J contains no interval, then the following statement is equivalent to (i) and (ii) (iii): There exists a function g : R → R such that f = g J -a.e. and g is continuous in the ordinary sense J -a.e. Proof. The fact that (ii) implies (i) is obvious. Suppose (i) is true and let f be J -continuous on a set M = Jc for J ∈ J. For each n ∈ N and x ∈ M, by Proposition 1.1.1(ii) there is an open interval I(n, x) and a J(n, x) ∈ J such that x ∈ I(n, x) \ J(n, x) ⊂ f−1((f(x) − 1/n, f(x) + 1/n)). For each fixed n, there must be a countable sequence xn,m ∈ M such that M ⊂∪m∈N I(n, xn,m). Let K = J ∪ ∪ n,m∈N J(n, xn,m) ∈ J. If x ∈ Kc and ε > 0, then there must exist natural numbers n and m such that 2/n < ε and x ∈ I(n, xn,m). Then |f(x) − f(xn,m)| < 1/n so that f(x) ∈ (f(xn,m) − 1/n, f(xn,m) + 1/n) ⊂ (f(x) − ε, f(x) + ε) つづく http://rio2016.5ch.net/test/read.cgi/math/1514376850/71
72: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/01(月) 17:11:49.95 ID:dCRrvhl7 >>71 つづき and I(n, xn,m) ∩ Kc ⊂ f−1((f(x) − ε, f(x) + ε)). Hence, f|Kc is continuous at x. To prove the last part of the theorem, note first that (iii) implies (ii) even without the restriction that J contains no interval. Now suppose that J contains no interval and that f,K are as in (ii). Define (1) G(x) = lim sup t→x,t∈Kc f(t) and (2) g(x) = G(x) when G(x) is finite, or = f(x) otherwise. In particular, it follows from (ii) that f|Kc = g|Kc . Let x ∈ Kc and ε > 0. According to (ii) there is a δ > 0 such that (3) |g(y) − g(x)| = |f(y) − f(x)| < ε/2 whenever y ∈ (x − δ, x + δ) ∩Kc. If z ∈ (x − δ, x + δ) ∩K, then the assumption that K can contain no nonempty open set implies the existence of a sequence {zn : n ∈ N} ⊂ (x − δ, x + δ) ∩ Kc such that f(zn) → G(z). Hence, by (3), G(z) is finite, so g(z) = G(z) and |g(z) − g(x)| ? ε/2 < ε. Therefore, g is continuous at x. QED つづく http://rio2016.5ch.net/test/read.cgi/math/1514376850/72
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.034s