[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 http://rio2016.5ch.net/test/read.cgi/math/1514376850/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
70: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/01(月) 17:10:50.85 ID:dCRrvhl7 >>69 つづき http://www.math.wvu.edu/~kcies/prepF/BookIdensity/BookIdensity.pdf I-DENSITY CONTINUOUS FUNCTIONS Krzysztof Ciesielski他 1994- 被引用数: 84 (抜粋) CHAPTER 1 The Ordinary Density Topology 1.1. A Simple Category Topology To gain some insight into what is happening with limits like this, it is useful to generalize this idea to a topological setting. A nonempty family J ⊂P(X) of subsets of X is an ideal on X if A ⊂ B and B ∈ J imply that A ∈ J and if A∪B ∈ J provided A,B ∈ J. An ideal J on X is said to be a σ-ideal on X if ∪n∈N An ∈ J for every family {An : n ∈ N} ⊂ J. Let J be an ideal on R and To be the ordinary topology on R. The set T (J) = {G \ J : G ∈ To, J ∈ J} is a topology on R which is finer than To. The following proposition is evident from the definitions. Proposition 1.1.1. Let J be a σ-ideal on R and T (J ) be as above. For f : (R, T (J )) → (R, To) and x0 ∈ R the following statements are equivalent to each other. (i): f is continuous at x0. (ii): Given ε > 0 there is a δ > 0 such that {x ∈ (x0 − δ, x0 + δ) : |f(x) − f(x0)| ≧ ε} ∈ J. つづく http://rio2016.5ch.net/test/read.cgi/math/1514376850/70
71: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/01(月) 17:11:20.87 ID:dCRrvhl7 >>70 つづき Theorem 1.1.4. Let J be a σ-ideal and f : R → R. The following statements are equivalent. (i): The function f is J -continuous J -a.e. (ii): There exists a set K ∈ J such that the restricted function f|Kc is continuous. Furthermore, if the ideal J contains no interval, then the following statement is equivalent to (i) and (ii) (iii): There exists a function g : R → R such that f = g J -a.e. and g is continuous in the ordinary sense J -a.e. Proof. The fact that (ii) implies (i) is obvious. Suppose (i) is true and let f be J -continuous on a set M = Jc for J ∈ J. For each n ∈ N and x ∈ M, by Proposition 1.1.1(ii) there is an open interval I(n, x) and a J(n, x) ∈ J such that x ∈ I(n, x) \ J(n, x) ⊂ f−1((f(x) − 1/n, f(x) + 1/n)). For each fixed n, there must be a countable sequence xn,m ∈ M such that M ⊂∪m∈N I(n, xn,m). Let K = J ∪ ∪ n,m∈N J(n, xn,m) ∈ J. If x ∈ Kc and ε > 0, then there must exist natural numbers n and m such that 2/n < ε and x ∈ I(n, xn,m). Then |f(x) − f(xn,m)| < 1/n so that f(x) ∈ (f(xn,m) − 1/n, f(xn,m) + 1/n) ⊂ (f(x) − ε, f(x) + ε) つづく http://rio2016.5ch.net/test/read.cgi/math/1514376850/71
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.028s