[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 http://rio2016.5ch.net/test/read.cgi/math/1514376850/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
636: 132人目の素数さん [sage] 2018/01/21(日) 01:01:18.47 ID:hREHM7MH >>560 >1.「f はある開区間の上でリプシッツ連続である.」→「f は”Bf内の”ある開区間の上でリプシッツ連続である.」 > という表現にすべきだったろう。”Bf内の”は、私には自明だが、証明を書いた人は、 > 表現がまずく”証明のために作った”B_N,M”なる被覆空間の合併集合”との区別を忘れてしまった。つまり、”B_N,M”と”Bf”とを混同してしまったのだ 息をするように間違えるゴミクズ。キチガイ。 「f はある開区間の上でリプシッツ連続である.」という表現のままで完全に正しい。 「Bf内」という余計な条件は全く必要ない。 >2.集合の被覆(>>210ご参照)だから、被覆される集合と被覆する集合の性質とは、基本的には無関係。単に集合の大小関係にすぎない > つまり、「Bf ⊆ ∪B_N,M」以上のことはなにも言えないから、「∪B_N,M」側について何か証明しても、”Bf”には無関係だということに気付いていない 息をするように間違えるゴミクズ。キチガイ。 証明の中では、ベールのカテゴリ定理を経由することで、ある B_{N,M} が内点を持つことが示される。 すなわち、(a,b) ⊂ B_{N,M} を満たす開区間 (a,b) が取れることが示される。 このことから、f は (a,b) 上でリプシッツ連続になることが示される。 お前がいつまでも証明から逃げ回って理解しようとしないだけ。 >” ruler function ”を思い浮かべれば、気付くのは容易だったろう 息をするように間違えるゴミクズ。キチガイ。何度も同じことを言わせるな。 ruler function を f とするとき、R−B_f は第一類集合になってないので、 f は例の定理の「適用範囲外」ということになり、よって例の定理の反例になり得ない(>>45)。 http://rio2016.5ch.net/test/read.cgi/math/1514376850/636
643: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/21(日) 08:41:25.02 ID:KXw6ILfu >>635-641 寒中お見舞い申し上げます!(^^ ご苦労さんです(^^ 年末年始に自得したのかと思ったが そうでは無かったのかい?(^^ ”「f はある開区間の上でリプシッツ連続である.」という表現のままで完全に正しい。 「Bf内」という余計な条件は全く必要ない。”(>>636より) だから、「Bf内」という解釈でいいだろ? 別に表現する必要もなく で、(>>184) ”系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない. 証明 存在すると仮定する. 定理1.7 のBf について, R − Q = (無理数全体) = (f の微分可能点全体) ⊆ Bf が成り立つので, R − Bf ⊆ Q = ∪p ∈Q {p} ・・・(1) である. ここで, 1 点集合{p} (p ∈ Q) は全部で可算無限個あり, 各{p} は内点を持たない閉集合であ るから, (1) の右辺は内点を持たない閉集合の可算和である. よって, 定理1.7 が使えて, f はある開 区間(a, b) の上でリプシッツ連続である. 特に, f は(a, b) の上で連続である (2) さて, Q はR 上 で稠密だから, (a, b) ∩ Q ≠ Φ である. そこで, x ∈ (a, b) ∩ Q を何でもいいから1 つ取る. (2) より, f は点x で連続であるが, 一方で, x ∈ Q とf の仮定により, f は点x で不連続である. これは矛 盾. よって, 題意が成り立つ.” だったろ? 「有理数の点で不連続」だから、この集合(「有理数の点」)だけを見れば、R内で”内点を持たない閉集合の高々可算和で被覆できる”でしょ? だが、明らかに、有理数の点はR内で稠密だから、定理1.7の適用外 反例にならないというが、それをいうためには、”R−Bf が内点を持たない閉集合の高々可算和で被覆できる”を否定する証明を別にしなければならない それは、”R−Bf が内点を持たない閉集合の非可算和でしか被覆できない”という方向でしか、証明できない。(「ある開区間の上でリプシッツ連続である」とは証明できない) ”R−Bf が内点を持たない閉集合の非可算和でしか被覆できない”をいう証明は、系1.8の証明そのものでしかない! 以上 http://rio2016.5ch.net/test/read.cgi/math/1514376850/643
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s