[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 http://rio2016.5ch.net/test/read.cgi/math/1514376850/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
468: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/14(日) 09:33:13.29 ID:fNVDpqMq >>462 >その話は、時枝記事中でも、非可測集合のパラドックスとして、ちょっと触れているだろう? >(なお、”非可測集合のパラドックス”は、私見だが本質ではないと思っているのだが) 時枝先生の書いている、「ヴィタリ類似だから、即お手つきか」という話ではないように思うということ (時枝先生の話) 現代数学の系譜 工学物理雑談 古典ガロア理論も読む47 https://rio2016.5ch.net/test/read.cgi/math/1512046472/21 (抜粋) 数学セミナー201511月号P37 時枝記事に、次の一文がある 「R^N/〜 の代表系を選んだ箇所で選択公理を使っている. その結果R^N →R^N/〜 の切断は非可測になる. ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」 「逆に非可測な集合をこさえるには選択公理が要る(ソロヴェイ, 1970年)から,この戦略はふしぎどころか標準的とさえいえるかもしれない. しかし,選択公理や非可測集合を経由したからお手つき, と片付けるのは,面白くないように思う. 現代数学の形式内では確率は測度論によって解釈されるゆえ,測度論は確率の基礎, と数学者は信じがちだ. だが,測度論的解釈がカノニカル, という証拠はないのだし,そもそも形式すなわち基礎, というのも早計だろう. 確率は数学を越えて広がる生き物なのである(数学に飼いならされた部分が最も御しやすいけれど).」 (引用終り) と、時枝先生は書いている。が、頭の悪いスレ主には、意味が良く取れない 1.ヴィタリ類似を経由したからと言って、具体的に計量を計算するまでは、矛盾はおきないでしょ 2.また、話を、選択公理にすり替えているが、ちょっとおかしい 3.決定番号は、自然数Nの範囲だし、測度論に一気に飛んでも、「なに言ってるの?」と感じる 4.だから、どんな空間の計量を問題にしているかを定義せずに話を飛ばすから、「あれあれ?」と 5.要は、「h:無限次元ベクトル空間R^N→N’(決定番号の集合)」で、x,y∈N’で、P(x>y)=1/2 がきちんと計量を定義して言えるのか? 言えないだろうというのが、下記の話だと理解している つづく http://rio2016.5ch.net/test/read.cgi/math/1514376850/468
469: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/14(日) 09:33:43.01 ID:fNVDpqMq >>468 つづき <参考> 現代数学の系譜 工学物理雑談 古典ガロア理論も読む47 https://rio2016.5ch.net/test/read.cgi/math/1512046472/31 20 http://rio2016.2ch.net/test/read.cgi/math/1466279209/519-522 519 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 22:27:11.14 ID:f9oaWn8A [4/13] >>518 X=(X_1,X_2,…)をR値の独立な確率変数とする. 時枝さんのやっていることは 無限列x=(x_1,x_2,…)から定められた方法によって一つの実数f(x)を求める. 無限列x=(x_1,x_2,…)から定められた方法によって一つの自然数g(x)を求める. P(f(X)=X_{g(X)})=99/100 ということだが,それの証明ってあるかな? 100個中99個だから99/100としか言ってるようにしか見えないけど. 521 名前:132人目の素数さん[sage] 投稿日:2016/07/03(日) 22:36:32.49 ID:/kjhINs/ [10/15] >>519 記事のどこが疑問なのか明確にしてもらえますか? 説明不足でよく分からない 522 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 22:40:29.88 ID:f9oaWn8A [5/13] 面倒だから二列で考えると Y=(X_1,X_3,X_5,…)とZ=(X_2,X_4,X_6,…)独立同分布 実数列x=(x_1,x_2,…)から最大番号を与える関数をh(x)とすると P(h(Y)>h(Z))=1/2であれば嬉しい. hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明 つづく http://rio2016.5ch.net/test/read.cgi/math/1514376850/469
478: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/14(日) 14:07:41.58 ID:fNVDpqMq >>468 補足 >「h:無限次元ベクトル空間R^N→N’(決定番号の集合)」で、x,y∈N’で、P(x>y)=1/2 がきちんと計量を定義して言えるのか? ここを細分すると R^N:無限次元ベクトル空間 s∈R^N s=(s1,s2,s3,・・・) ↓ R^N/〜(商射影の切断)(https://ja.wikipedia.org/wiki/%E5%95%86%E5%86%99%E5%83%8F 商写像 ) ↓ 代表r=r(s) r=(r1,r2,r3,・・・) ↓ N’:決定番号の集合 d∈N’ d=d(s) ↓ N:自然数の集合 となる (補足) ・しばしば、我々は無意識に、決定番号の集合N’と自然数の集合Nとを同一視してしまう ・だが、決定番号の集合N’は、問題の数列sと代表r=r(s)との関係で、多く(非可算無限)の重複を含む集合になっている (例:決定番号2なら、s=(s1,s2,s3,・・・)とr=(r1,r2,r3,・・・)とで、s2=r2,s3=r3,・・・ の関係があり、s1≠r1だが、この同値類内の決定番号2の元は、R^1の自由度がある。 同様に、決定番号3なら、R^2の自由度。決定番号nなら、R^(n-1)の自由度。) ・可算無限長の数列を簡単のために2列で考えると、2列の決定番号の大小比較は自然数の集合Nのレベルで行うが、その背景に決定番号の集合N’があるから、大小の確率を考えるときは、本来、決定番号の集合N’をベースに考える必要がある ・ところで、以前の議論でもあったように、有限な自然数の部分集合(1,2,3,・・・,m)で、あるx(1<= x <=m)を考えると、x <= m/2 (平均以下)である確率は、mが十分大きければ1/2だろう ・しかし、m→∞(つまり集合が自然数の集合Nになる)では同じ議論はできない ・そして、考えるベースが、決定番号の集合N’であれば、なおさら、単純に確率1/2とは言えない。ここらが手品のタネだろう 以上 http://rio2016.5ch.net/test/read.cgi/math/1514376850/478
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.033s