[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 http://rio2016.5ch.net/test/read.cgi/math/1514376850/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
40: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/28(木) 23:41:49.82 ID:IsA0R4yK >>30 沢山のレスがありがとう まあ、ゆっくりやろう まだ、疑問に思っているのは 下記のDifferentiability of the Ruler Functionの記述と貴方の定理との整合性だ http://mathforum.org/kb/message.jspa?messageID=5432910 (>>35より) Topic: Differentiability of the Ruler Function Dave L. Renfro Posted: Dec 13, 2006 Replies: 3 Last Post: Jan 10, 2007 (抜粋) The ruler function f is defined by f(x) = 0 if x is irrational, f(0) = 1, and f(x) = 1/q if x = p/q where p and q are relatively prime integers with q > 0. Using ruler-like functions that "damp-out" quicker than any power of f gives behavior that one would expect from the above. Let w:Z+ --> Z+ be an increasing function that eventually majorizes every power function. Define f_w(x) = 0 for x irrational, f_w(0) = 1, and f_w(p/q) = 1/w(q) where p and q are relatively prime integers. ** f_w is differentiable on a set whose complement has Hausdorff dimension zero. Jurek [4] (pp. 24-25) Interesting, each of the sets of points where these functions fail to be differentiable is large in the sense of Baire category. THEOREM: Let g be continuous and discontinuous on sets of points that are each dense in the reals. Then g fails to have a derivative on a co-meager (residual) set of points. In fact, g fails to satisfy a pointwise Lipschitz condition, a pointwise Holder condition, or even any specified pointwise modulus of continuity condition on a co-meager set. (Each co-meager set has c points in every interval.) つづく http://rio2016.5ch.net/test/read.cgi/math/1514376850/40
41: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/28(木) 23:44:24.28 ID:IsA0R4yK >>40 つづく [13] Gerald Arthur Heuer, "Functions continuous at irrationals and discontinuous at rationals", abstract of talk given 2 November 1963 at the annual fall meeting of the Minnesota Section of the MAA, American Mathematical Monthly 71 #3 (March 1964), 349. The complete text of the abstract follows, with minor editing changes to accommodate ASCII format. Earlier results of Porter, Fort, and others suggest additional questions about the functions in the title. Differentiability and Lipschitz conditions are considered. Special attention ispaid to the ruler function (f) and its powers. Sample results: THEOREM: If 0 < r < 2, f^r is nowhere Lipschitzian; f^2 is nowhere differentiable, but is Lipschitzian on a dense subset of the reals. THEOREM: If r > 0, f^r is continuous but not Lipschitzian at every Liouville number; if r > 2, f^r is differentiable at every algebraic irrational. THEOREM: If g is continuous at the irrationals and not continuous at the rationals, then there exists a dense uncountable subset of the reals at each point of which g fails to satisfy a Lipschitz condition. REMARK BY RENFRO: The last theorem follows from the following stronger and more general result. Let f:R --> R be such that the sets of points at which f is continuous and discontinuous are each dense in R. Let E be the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite. Then E is co-meager in R (i.e. the complement of a first category set). This was proved in H. M. Sengupta and B. K. Lahiri, "A note on derivatives of a function", Bulletin of the Calcutta Mathematical Society 49 (1957), 189-191 [MR 20 #5257; Zbl 85.04502]. See also my note in item [15] below. (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1514376850/41
45: 132人目の素数さん [sage] 2017/12/29(金) 00:12:33.08 ID:gcYWyS10 >>40-42 >まだ、疑問に思っているのは >下記のDifferentiability of the Ruler Functionの記述と貴方の定理との整合性だ 悪あがきは やめたまえ。前スレ540 で既に述べたとおり、 スレ主の大好きな f^r と f_w は、例の定理の反例になり得ない。 https://rio2016.5ch.net/test/read.cgi/math/1513201859/540 このレスにより、R−B_{f^r} は第一類集合にならず、R−B_{f_w} も第一類集合にならないので、 f^r と f_w は例の定理の「適用範囲外」ということになり、よって例の定理の反例になり得ない。 また、f^r と f_w が例の定理の「適用範囲外」であるという事実により、Differentiability of the Ruler Function が どのように記述されていようとも、そのことと例の定理との間の整合性なんか 全 く 考 え る 必 要 が な い 。 http://rio2016.5ch.net/test/read.cgi/math/1514376850/45
245: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/07(日) 20:46:08.89 ID:2l42E8SE >>238 おっちゃん、どうも、スレ主です。 >いっておくけど、系 1.8 の結果は >有理数の点で不連続, 無理数の点で一様連続となるf : R → R は存在しない >まで拡張出来る。 ああ、下記だな”g fails to satisfy・・even any specified pointwise modulus of continuity condition on a co-meager set.”& ”Let E be the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite. Then E is co-meager in R (i.e. the complement of a first category set).” 繰返すが、 ”any specified pointwise modulus of continuity condition” & ”at least one of the four Dini derivates of f is infinite” だから(特に後者Dini微分)、どこかの無理数の点で一様連続も破綻するだろうな (>>40より)http://mathforum.org/kb/message.jspa?messageID=5432910 THEOREM: Let g be continuous and discontinuous on sets of points that are each dense in the reals. Then g fails to have a derivative on a co-meager (residual) set of points. In fact, g fails to satisfy a pointwise Lipschitz condition, a pointwise Holder condition, or even any specified pointwise modulus of continuity condition on a co-meager set. (Each co-meager set has c points in every interval.) (>>41より) REMARK BY RENFRO: The last theorem follows from the following stronger and more general result. Let f:R --> R be such that the sets of points at which f is continuous and discontinuous are each dense in R. Let E be the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite. Then E is co-meager in R (i.e. the complement of a first category set). This was proved in H. M. Sengupta and B. K. Lahiri, "A note on derivatives of a function", Bulletin of the Calcutta Mathematical Society 49 (1957), 189-191 [MR 20 #5257; Zbl 85.04502]. See also my note in item [15] below. (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1514376850/245
366: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/10(水) 21:42:07.86 ID:xixJS48Q >>364 追加 ちょっと思いついたので、悪いが、忘れないうちに下記を書いておく (>>40より) http://mathforum.org/kb/message.jspa?messageID=5432910 (>>35より) Topic: Differentiability of the Ruler Function Dave L. Renfro Posted: Dec 13, 2006 Replies: 3 Last Post: Jan 10, 2007 より The modefied ruler function f is defined by f(x) = 0 if x is irrational, f(0) = 1, and f(x) = 1/w(q) if x = p/q ∈Q where p and q are relatively prime integers with q > 0. ここに w(q):an increasing function that eventually majorizes every power function. (w(q)は、どんなpの冪より早く増大する関数 https://kbeanland.files.wordpress.com/2010/01/beanlandrobstevensonmonthly.pdf Modifications of Thomae’s function and differentiability, (with James Roberts and Craig Stevenson) Amer. Math. Monthly, 116 (2009), no. 6, 531-535. などではP532で、” (e.g., ai = 1/i^(i^i) )”などと記されている。qで書けば、= 1/q^(q^q)だ) 簡単のために、区間[0, 1]を考える。(同じことを、区間[n, n+1] (nは整数)で考えれば、実数R全体に展開できる) このような、場合、上記数学者のRenfroさんや、Robertsさんたちは、”Qで不連続、リュービル数(超越数)で微分不可(リプシッツ連続でもない)だが、それ以外の無理数では、微分可だ”という つづく http://rio2016.5ch.net/test/read.cgi/math/1514376850/366
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.034s