[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 http://rio2016.5ch.net/test/read.cgi/math/1514376850/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
189: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 20:13:29.17 ID:miqaDy4s >>188 おっちゃん、どうも、スレ主です。 レスありがとう(^^ (>>180より) ”定理1.7 (422 に書いた定理) f : R → R とする. Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ } と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間(a, b) の 上でリプシッツ連続である.” この定理1.7の面白さは ”系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない.”(>>184) を著しく拡張しているところだ つまり、系1.8において、 1)不連続→リプシッツ連続でない 2)微分可能→リプシッツ連続 3)稠密:有理数と無理の稠密性→もっと一般な稠密性(但し、片方は可算無限濃度限定) の3つの特性で、系1.8を拡張したものが定理1.7になっているってこと これに匹敵する結果は、>>41-42に書いたが ”Let f:R --> R be such that the sets of points at which f is continuous and discontinuous are each dense in R. Let E be the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite. Then E is co-meager in R (i.e. the complement of a first category set). This was proved in H. M. Sengupta and B. K. Lahiri, "A note on derivatives of a function", Bulletin of the Calcutta Mathematical Society 49 (1957), 189-191 [MR 20 #5257; Zbl 85.04502]. ” つまり、一般な稠密性(但し、H. M. Sengupta and B. K. Lahiriは、可算非可算に関係なく) ”the sets of points at which f is continuous and discontinuous are each dense in R.”なのだが しかし、この discontinuous →リプシッツ連続でないという、上記1)の特性で、定理1.7は拡張されているのだ そこが、この定理1.7の面白さであり、斬新さだ 成り立てばだがね(^^ http://rio2016.5ch.net/test/read.cgi/math/1514376850/189
190: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 21:56:29.85 ID:miqaDy4s >>189 補足 >3)稠密:有理数と無理の稠密性→もっと一般な稠密性 で、この定理1.7で首肯できないものの一つが、この拡張です 下記にあるようにP532 T(ai)(x) = 0 if x 無理数, a_n if x = m/n 互いに素な有理数 で、a_n =n^k として、kを大きくする すると、k>2で、どんどん微分可能な領域が増える。最後は、Liouville numbersのみが微分不可で残るという この結果と、定理1.7の一般な稠密性とが、果たして整合するのかどうか? 現実のQと無理数(R \ Q)とでは、具体的なQと無理数との相性のような絡み合いがあって Liouville numbersのように、有理数でよく近似できる数(それは微分不可)で 一方、”Diophantine approximation of algebraic irrationals, called Roth’s Theorem”のように、近似限界のある数(代数的数の性質)(それは微分可能)で 無理数にも個性があるんです(下記「Modifications of Thomae’s function」) だが、そういうことを全部抽象化した結果が、定理1.7なんですよね まあ、定理1.7はものすごい強い結果だと・・・本当に成立しているのか? ((>>189)H. M. Sengupta and B. K. Lahiriも、そういう結果なんですけどね(^^ ) (>>90より) https://kbeanland.files.wordpress.com/2010/01/beanlandrobstevensonmonthly.pdf Modifications of Thomae’s function and differentiability, (with James Roberts and Craig Stevenson) Amer. Math. Monthly, 116 (2009), no. 6, 531-535. (抜粋) P534 We finish by remarking on some obvious consequences of the previous propositions. First, for k <= 2, T(1/n^k ) is nowhere differentiable. By Roth’s Theorem, if α(an) > 2, T(ai ) is differentiable on the set of algebraic irrational numbers. T(1/n^9) is differentiable at all the algebraic irrationals, e, π, π^2, ln(2), and ζ(3), and not differentiable on the set of Liouville numbers. Finally, if α(ai ) = ∞, T(ai ) is differentiable on the set of all non-Liouville numbers. Since the set of Liouville numbers has measure zero, T(ai ) is differentiable almost everywhere. (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1514376850/190
195: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/06(土) 12:48:01.93 ID:sJCr7ecA >>194 訂正 6)系1.8は、定理1.7中の上記a)のみ。a)のみが、既存の別証明がある。しかし、b)からd)の3ケースは、既存の証明は見つかっていない ↓ 6)系1.8は、定理1.7中の上記a)のみ。a)b)のみが、既存の別証明がある*)。しかし、c)d)の2ケースは、既存の証明は見つかっていない *)b)は、(>>189)H. M. Sengupta and B. K. Lahiriの結果より ”Let E be the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite. Then E is co-meager in R (i.e. the complement of a first category set).” http://rio2016.5ch.net/test/read.cgi/math/1514376850/195
197: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/06(土) 13:36:46.05 ID:sJCr7ecA >>195 補足 R−Bfを拡張して、Q+the set of Liouville numbers(これは、非可算だが、内点を持たない閉集合の和)を含むように、可算→非可算 まで考える すると、(>>189)H. M. Sengupta and B. K. Lahiriの結果より ”Let E be the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite. Then E is co-meager in R (i.e. the complement of a first category set).” だから c)R−Bfが一般の不リプシッツ連続(除く不連続)*)、Bfが可微分 d)R−Bfが一般の不リプシッツ連続(除く不連続)*)、Bfが一般のリプシッツ連続(除く可微分)*) の2ケースとも、そのような「f : R → R は存在する!」( c)の具体例が>>190の PDF "α(ai ) = ∞, T(ai ) is differentiable on the set of all non-Liouville numbers. "だ ) だから、R−Bfを縮小して、非可算→可算に落としたときに、 「f : R → R は存在しない!」になる数学的な背景があるや否やだが http://rio2016.5ch.net/test/read.cgi/math/1514376850/197
269: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 16:48:13.57 ID:KgoytC9i >>268 つづき だから、定理1.7は、二つに分けて 1.R−Bfが稠密でなく、Bfがある開区間(a, b) を含む場合 2.R−Bfが稠密で、Bfが全く開区間(a, b) を含まない場合 とすべき 1.の場合、”f はある開区間の上でリプシッツ連続である.”は自明。ほとんど、証明の必要もない 2.の場合、「非可算無限の集合E:”any specified pointwise modulus of continuity condition” & ”at least one of the four Dini derivates of f is infinite”が、存在することになるので、そのようなfは存在しえない」のような方向を目指すべき 2.の場合をさらに細分化する(>>194を一部修正) R−Bf がR中で稠密な場合を更に、4つに細分する a)R−Bfが不連続、Bfが可微分(これが系1.8に当たる) b)R−Bfが不連続、Bfが一般のリプシッツ連続(除く可微分)*) c)R−Bfが一般の不リプシッツ連続(除く不連続)*)、Bfが可微分 d)R−Bfが一般の不リプシッツ連続(除く不連続)*)、Bfが一般のリプシッツ連続(除く可微分)*) (注*)一般のリプシッツ連続とはlim sup y→x |(f(y) − f(x))/(y − x)|< +∞を満たすこと、一般の不リプシッツ連続とはlim sup y→x |(f(y) − f(x))/(y − x)|= +∞を満たすこと) 系1.8は、定理1.7中の上記a)の場合。b)は下記。よって、a)b)のみが、既存の別証明がある*)。しかし、c)d)の2ケースは、既存の証明は見つかっていない *)b)は、(>>189)H. M. Sengupta and B. K. Lahiriの結果より ”Let E be the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite. Then E is co-meager in R (i.e. the complement of a first category set).”が成り立つことが分っている 繰返すが、c)d)の2ケースで、有理数Qを想定して、R−Bf がR中で稠密かつ可算濃度の集合の場合に、ケースc)d)のような関数f : R → Rが存在するか否か そこが、まだ不明。 以上 http://rio2016.5ch.net/test/read.cgi/math/1514376850/269
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.039s