[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
521
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/15(月) 07:30:23.12 ID:xsWEHCro(1/7) AAS
>>519

証明成り立ってないでしょ?
それは、>>366-370に書いた通りで

「定理1.7 (422 に書いた定理)」は、有理数Qのように補集合R−Bf がR中に稠密分散しているときは、守備範囲外
つまり、有理数Qのように補集合R−Bf がR中に稠密分散しているときは、リプシッツ連続であるような開区間(a, b)は取れない(>>368

だから、系1.8に対して、「定理1.7 (422 に書いた定理)」を使って、矛盾を導くことはできない
証明は、これからじっくり読む予定です
522
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/15(月) 07:35:04.01 ID:xsWEHCro(2/7) AAS
>>481
>今取り組んでいるのは、順序が決まっていて、かつ順序演算で構成する元が等しいかどうかわかる元を持つ(全順序な)部分集合を効率的に表現するプログラム

C++さん、どうも。スレ主です。
これどういう意味かな?
公開して良い範囲で、説明してもらえると、ありがたい(^^
523: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/15(月) 07:48:16.85 ID:xsWEHCro(3/7) AAS
>>522 追加

下記などで、全部ソートしておいて、比較するってことじゃ足りないということ?

https://ja.wikipedia.org/wiki/%E3%82%BD%E3%83%BC%E3%83%88
ソート

目次 [非表示]
1 概要
2 ソートアルゴリズムの分類
2.1 安定ソート
2.2 内部ソートと外部ソート
2.3 比較ソート
2.4 計算量
2.5 手法
2.6 再帰
3 ソートアルゴリズムの一覧
4 比較ソートの理論限界
5 メモリ使用パターンとインデックスソート
6 脚注・出典
7 参考文献
8 関連項目
9 外部リンク
9.1 ソートアルゴリズムの視覚化
524
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/15(月) 07:50:24.46 ID:xsWEHCro(4/7) AAS
>>520
長文は、ほぼ引用コピペだから、それを読むより、URLを開いて読む方がいいだろう
こちらとしては、引用コピペをしておくと、google検索が使えて便利なんだ
530
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/15(月) 19:37:52.81 ID:xsWEHCro(5/7) AAS
>>529 追加

元PDFを見て貰った方が話は早い
https://www.axfc.net/u/3870548?key=Lipschitz 「定理1.7 (422 に書いた定理)」の証明(>>145より)

で、(元PDFを見ている前提で)
>>525より)「BfがB_N,Mで被覆されますので
あるB_N,Mの中に開区間が存在し
その区間内でリプシッツ連続になります」

と仰るが、B_N,Mは、定理1.7の証明中に出現するだけで、定理1.7の命題以前には出てきませんね
もし、定理1.7の主張で、「f はある開区間の上でリプシッツ連続」が、被覆側のB_N,Mの中で、開区間が存在し、その区間内でリプシッツ連続という主張なら、
被覆側のB_N,Mについての定義は、定理1.7の命題中、又は、その前に置かれるべきだ

また、定理1.7も
「・・・、 f は”B_N,Mの中の”ある開区間の上でリプシッツ連続である.」とでも書くべきでしょう

(”B_N,Mの中の”→”∪N ,M>=1BN,M の中の”と「∪N ,M>=1BN,M 」を使うべきかもしれませんが
>>181より ”Bf ⊆ ∪N ,M>=1BN,M が成り立つ”ってことですからね ))

だから、定理1.7は、”Bf内に、リプシッツ連続なある開区間(a, b)の存在”を主張しているってことですね
ところが、仰るように(>>525)「あるB_N,Mの中に開区間が存在しその区間内でリプシッツ連続になります」ということしか証明していないと読みました

なので、定理の主張と証明とが、不一致と思います
536
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/15(月) 20:43:44.36 ID:xsWEHCro(6/7) AAS
>>534-535
意味が分らない

普通、数学では、証明の前に、定理の主張を明確にすべき
明確にするためには、定理に使われる用語は、すべて定義されているべき

なので、

>>529より)
定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間の
上でリプシッツ連続である.
(引用終わり)

で、「f はある開区間の上でリプシッツ連続」の意味は、
「Bf内に、リプシッツ連続なある開区間(a, b)の存在を主張している」としか読み得ない
(∵定理の命題中で、R中にBfとその補集合R−Bfしか定理1.7では定義されていないし、R−Bf内に開区間など存在しようがないですから)

ここは良いですか?
537: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/15(月) 21:30:14.71 ID:xsWEHCro(7/7) AAS
>>489 補足

C++さん、どうも。スレ主です。

>おお、これ、知りたい
>今取り組んでいるのは、順序が決まっていて、かつ順序演算で構成する元が等しいかどうかわかる元を持つ(全順序な)部分集合を効率的に表現するプログラム

何を知りたいのか、細かい点が分らないが
関連のリンクなどを読んで、分らない点があれば書いてみて
一緒に考えましょう〜!(^^
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.043s