[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
193(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/06(土) 12:18:28.10 ID:sJCr7ecA(1/11) AAS
>>192
どうも。スレ主です。レスありがとう。訂正を適用すると
(>>188 訂正し引用)
スレ主がコピペした、pdfの証明に則って話を進める。
実際は出来ないが、仮に系1.8 を否定して
有理数の点で不連続, 無理数の点で微分可能となるf : R → R が存在する
とすると、
(1):f はある開区間(a, b) の上でリプシッツ連続である.
か
(2):一方で, x ∈ Q とf の仮定により, f は点x で不連続である.
のどちらか1つは否定されることになる。
勿論、実際には系1.8 の否定は出来ず、論理的には(1)も(2)も正しい。
話は元に戻し、(2)を否定したとする。すると、xは有理点であって、かつfがxで連続となる。
これはfについての元の仮定に反し矛盾する。よって、(2)を否定することは不可能。
従って、(1)に限り否定される。その結果、
「(3)」:f は開区間(a, b) の上でリプシッツ連続ではない.
となる。ここに、この開区間(a, b) とfは「それぞれ」定理1.7 (422 に書いた定理) の証明で用いられる開区間(a, b) とf : R → R 「に一致させることが出来る」。
定理1.7 (422 に書いた定理) の証明と、その中で使っている補題1.5、補題1.6、系1.4の各証明では背理法は全く用いてなく、直接的に証明をしている。
そして、定理1.7 (422 に書いた定理) の証明の中では直接的にfが開区間(a, b) 上でリプシッツ連続なことを導いている。
この証明の中では開区間(a, b) は適当に選んで取っている。もし定理1.7 (422 に書いた定理) を否定すると、
他にも準備が必要になるが、その証明は大体結論から仮定へと順々に否定されて行き、
やがてfは開区間(a, b) 上でリプシッツ連続ではないことが示される。この結果は(1)に反することになる。
だから、定理1.7 (422 に書いた定理) の否定は出来ない。
(引用終り)
つづく
194(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/06(土) 12:24:44.27 ID:sJCr7ecA(2/11) AAS
>>193 つづき
1)(>>190 PDFより)”有理数の点で不連続, 無理数の点で、the set of all non-Liouville numbersで微分可能、the set of Liouville numbersで微分不可(勿論リプシッツ連続ではないが連続)となるf : R → R が存在する”は正しい
2)これは”系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない.”の別証明になっている
3)ところで、スレ主は頭が悪いので、定理1.7を場合分けして、”R−Bf が内点を持たない閉集合の高々可算和で被覆できる”けれども、R−Bf がR中で稠密な場合を考える。
4)これはQを想定した場合。この場合は、「f : R → R は存在しない!」が、定理1.7の直接の帰結である。
5)R−Bf がR中で稠密な場合を更に、4つに細分する
a)R−Bfが不連続、Bfが可微分(これが系1.8に当たる)
b)R−Bfが不連続、Bfが一般のリプシッツ連続(除く可微分)*)
c)R−Bfが一般の不リプシッツ連続(除く不連続)*)、Bfが可微分
d)R−Bfが一般の不リプシッツ連続(除く不連続)*)、Bfが一般のリプシッツ連続(除く可微分)*)
(注*)一般のリプシッツ連続とはlim sup y→x |(f(y) − f(x))/(y − x)|< +∞を満たすこと、一般の不リプシッツ連続とはlim sup y→x |(f(y) − f(x))/(y − x)|= +∞を満たすこと)
6)系1.8は、定理1.7中の上記a)のみ。a)のみが、既存の別証明がある。しかし、b)からd)の3ケースは、既存の証明は見つかっていない
7)で、系1.8が正しいからといって、定理1.7が正しいことの証明の代用にはならない。だから、系1.8を出発点に論じるのは如何なものかという気がするよ
以上
195(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/06(土) 12:48:01.93 ID:sJCr7ecA(3/11) AAS
>>194 訂正
6)系1.8は、定理1.7中の上記a)のみ。a)のみが、既存の別証明がある。しかし、b)からd)の3ケースは、既存の証明は見つかっていない
↓
6)系1.8は、定理1.7中の上記a)のみ。a)b)のみが、既存の別証明がある*)。しかし、c)d)の2ケースは、既存の証明は見つかっていない
*)b)は、(>>189)H. M. Sengupta and B. K. Lahiriの結果より
”Let E be the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite.
Then E is co-meager in R (i.e. the complement of a first category set).”
197(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/06(土) 13:36:46.05 ID:sJCr7ecA(4/11) AAS
>>195 補足
R−Bfを拡張して、Q+the set of Liouville numbers(これは、非可算だが、内点を持たない閉集合の和)を含むように、可算→非可算 まで考える
すると、(>>189)H. M. Sengupta and B. K. Lahiriの結果より
”Let E be the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite.
Then E is co-meager in R (i.e. the complement of a first category set).”
だから
c)R−Bfが一般の不リプシッツ連続(除く不連続)*)、Bfが可微分
d)R−Bfが一般の不リプシッツ連続(除く不連続)*)、Bfが一般のリプシッツ連続(除く可微分)*)
の2ケースとも、そのような「f : R → R は存在する!」( c)の具体例が>>190の PDF
"α(ai ) = ∞, T(ai ) is differentiable on the set of all non-Liouville numbers. "だ )
だから、R−Bfを縮小して、非可算→可算に落としたときに、
「f : R → R は存在しない!」になる数学的な背景があるや否やだが
198: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/06(土) 13:38:39.55 ID:sJCr7ecA(5/11) AAS
>>196
おっちゃん、どうも、スレ主です。
レスありがとうよ
だが、おっちゃん
おれの挙げたPDFの専門論文からっきし読めないのか?
199(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/06(土) 13:56:46.24 ID:sJCr7ecA(6/11) AAS
>>196
>あと、何でもかんでも文献引用してその結果を鵜呑みにする考え方を改めること。
話は逆で、数学のその道の専門家が、投稿論文にして、それを他の人が、引用して・・
その引用のPDFも、まったくゼロから成り立つわけではなく、それ以前の結果を発展させたものになっている。投稿論文で年月が経ったものは、折り紙付きだよ
例えば、(>>90より)
https://kbeanland.files.wordpress.com/2010/01/beanlandrobstevensonmonthly.pdf
P535
5. CONCLUDING REMARKS.で
”After the submission of the current manuscript,
the authors were informed that a slightly less general version of Proposition 4.2 can be
found in [9, p. 232].”
とあるよ
つまり、これが逆で、”that a slightly more general version of Proposition 4.2”だったら、この論文は掲載拒否もあったろうし、
掲載されても、将来引用されるべきは、[9, p. 232]の方。つまり、”Kevin Beanland, JamesW. Roberts, and Craig Stevenson”の価値は、圧倒的に低い
でな、定理1.7なども同じで
本来、成立するなら類似の定理があるだろうと思う(>>197などに書いた通りだ)
学生までは、自分の独自証明の定理が、先行する論文の再証明であっても褒められるだろう
だが、院から上は、他者からの評価は、不勉強と言われるだろう
それでも、再証明なり別証明は、証明の当人としては無価値ではないけどね
だが、証明できたと思った定理が成立していないとしたら?
そのためにも、先行研究の調査はしっかり行うべきだと思うぞ
そこは、よく考えた方がいいぜ(^^
201: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/06(土) 14:27:20.90 ID:sJCr7ecA(7/11) AAS
>>199 補足
>>あと、何でもかんでも文献引用してその結果を鵜呑みにする考え方を改めること。
>
>話は逆で、数学のその道の専門家が、投稿論文にして、それを他の人が、引用して・・
>その引用のPDFも、まったくゼロから成り立つわけではなく、それ以前の結果を発展させたものになっている。投稿論文で年月が経ったものは、折り紙付きだよ
おっちゃんの論法だと
投稿論文で、定理1.7に反する結果が見つかっても、「定理1.7は証明されているから正しい」とか言いそうだな(^^
おれは逆だがね
もちろん、定理1.7を支持する結果が見つかれば、「定理1.7は正しい」(だろう)と言って、証明を読むけどね
202(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/06(土) 14:28:49.08 ID:sJCr7ecA(8/11) AAS
>>200
それは多分正しいが、論文の結論は読めるよ
現段階では、それで十分だろ?(^^
204(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/06(土) 15:05:21.45 ID:sJCr7ecA(9/11) AAS
>>202 補足
おれがいまいち、定理1.7の証明で理解できないのは
(引用)
”仮定から, 高々可算無限個の閉集合Ai⊆Rが存在して, 各Aiは内点を持たず,
しかもR−Bf ⊆ ∪iAiが成り立つ・・・ (1)”
”Bf ⊆ ∪_N,M>=1 BN,M が成り立つ”
”BN,M は閉集合である. すると, (2) の右辺は可算無限個の閉集合の和ということになるので,
系1.4 により, あるi に対してAiは内点を持つか, もしくは, あるN,M >= 1 に対して
BN,M は内点を持つかのいずれかである. 各Aiは内点を持たないの
だったから, あるN,M >= 1 に対してBN,M が内点を持つことになる. 特に, (a, b)⊆BN,M なる開
区間(a, b) が取れる. f は(a, b) 上でリプシッツ連続であることを示す.”
(引用終り)
で、「特に, (a, b)⊆BN,M なる開区間(a, b) が取れる」の部分
開区間(a, b) が取れるのは、被覆する側の集合のBN,Mだろ?
で、R−BfがQのようにR中に稠密に分散している場合を考えると、Bf自身は内点を持たないし、区間(a, b) も取れないことは自明(参考>>128より)
で、被覆する方の集合のBN,Mにおいて、それが内点を持ち、そこに区間(a, b) が取れるとしても、
”それにより被覆される側のBfが同じ性質を持ち、区間(a, b) が取れる”とする証明がね〜、いまいち納得できないんだ(^^
被覆する方の集合のBN,Mは、もともと内点を持つ閉集合。それは、ベールのカテゴリ定理からすぐ出る
だが、それと、被覆される側の集合の性質とは無関係
但し、「S は内点を持たない閉集合の高々可算和で被覆できる」の場合に限っては
S側も、「内点を持たない閉集合の高々可算和」でなければならないという強い縛りができる
が、”内点を持つ閉集合閉集合の高々可算和で被覆できる”と緩和するならば、
被覆されるS側は、なんの制約も受けないように思えてきたが(第一可算的空間などから(>>122))・・、どう?
206: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/06(土) 15:11:49.48 ID:sJCr7ecA(10/11) AAS
>>204 訂正
が、”内点を持つ閉集合閉集合の高々可算和で被覆できる”と緩和するならば、
↓
が、”内点を持つ閉集合の高々可算和で被覆できる”と緩和するならば、
207(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/06(土) 15:37:58.41 ID:sJCr7ecA(11/11) AAS
>>205
いやー、おっしゃる通り
おれスレ主は、そうとうバカで不勉強だな(^^
(>>128より)
”Qについての、(^i:内部、^e:外部、^f:境界、^a:閉包)は
Q^i = Φ, Q^e = Φ, Q^f = R, Q^a = R.
R \ Qについての、(^i:内部、^e:外部、^f:境界、^a:閉包)は
(R \ Q)^i = Φ, (R \ Q)^e =Φ, (R \ Q)^f = R, (R \ Q)^a = R.
つまりは、R内に稠密分散するQは、内部も外部もΦ(空)で、境界と閉包はRそのものになる
同様に、RからQを除いたR \ Qも、内部も外部もΦ(空)で、境界と閉包はRそのものになる”
(>>130より)
”内点を持たない稠密集合の境界はその集合の閉包に一致する”
(>>131より)
”p が集合の境界点となる必要十分条件は、p の任意の近傍が少なくとも一つその集合の点を含みかつ少なくとも一つその集合の補集合の点を含むことである。”
(引用終り)
外しているかも知れないが、これを、日常の例えで言えば
光学顕微鏡の分解能では、原子レベルの入り組んだ構造は、見えないってことかな
ε近傍という内点を持つ分解能で、内点を持たない稠密集合の境界を探しても、
ε近傍の分解能ではある集合Sの点とその補集合S ̄の点と、常に両方が見える
そういう理解で当たらずとも遠からずかな?(^^
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.037s