[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
98
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/02(火) 10:01:09.76 ID:p6PjQh75(1/14) AAS
>>96-97
>R\Qは?

(>>82より再録)
"で、”a nonempty open set”(ordinary open neighborhood )が、結構重要キーワードじゃないかな?
R中のQのように稠密分散で、
R\Qは、”a nonempty open set”の集まりになるけれども
(似た状況は、上記の「the Lebesgue measure of the sets R \ Cν and R \ Dν is 0, but the four sets Cν, R \ Cν, Dν, and R \ Dν are dense in R.」とある通りで)
「422に書いた定理」の系1.8の背理法証明に使えるような、区間(a, b)が取れると言えるかどうかだ?"

R\Qも、リウヴィル数に同じ

つまり、屋上屋の説明だが、RからQを抜く(Qは、孤立点の集合(内点を持たない閉区間の集合))
Rは至る所開(”a nonempty open set”(ordinary open neighborhood )の集合)

R\Qの各”a nonempty open set”(ordinary open neighborhood )は、ここにはq∈Qは含まれない
故に、このような場合には、「422に書いた定理」の系1.8の背理法証明に使えるような、区間(a, b)が取れると言えないのでは?
99: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/02(火) 10:03:28.28 ID:p6PjQh75(2/14) AAS
>>98 訂正

Rは至る所開(”a nonempty open set”(ordinary open neighborhood )の集合)
 ↓
R\Qは至る所開(”a nonempty open set”(ordinary open neighborhood )の集合)
101: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/02(火) 10:25:56.29 ID:p6PjQh75(3/14) AAS
>>87
どうも。スレ主です。
ID:9ORABeV3くんは、ピエロかな?

まあ、今年もよろしくね(^^

(参考)
https://textream.yahoo.co.jp/personal/history/comment?user=_SrJKWB8rTGHnA91umexH77XaNbpRq00WqwI62dl
サイコパスのピエロ(=不遇な「一石」 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets (Yahoo!でのあだ名が、「一石」)
102
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/02(火) 10:33:26.53 ID:p6PjQh75(4/14) AAS
>>100
ID:okX91MtSさん、どうも。スレ主です。
レスありがとう

なるほど、”Since it is the intersection of countably many such open dense sets”からは、開集合は言えないのか?
でも、”「422に書いた定理」の系1.8の背理法証明に使えるような、区間(a, b)が取れると言えかどうか”については、どうですか?
103: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/02(火) 10:36:16.06 ID:p6PjQh75(5/14) AAS
>>100
ID:okX91MtSさん、あなたはレベルが高いね〜(^^
ひょっとして、「ぷふ」さん?(^^
105
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/02(火) 11:45:25.56 ID:p6PjQh75(6/14) AAS
>>104
やっぱ、「ぷふ」さんか(^^
あなたと、例の「422に書いた定理」の人は、本当にレベル高いね
(書かれた証明にいちゃもんを付けるのは、数十分の一の能力できる。作曲や演奏はできないのに、音楽の批評ができるみたいにね(^^ (当然、数学の証明はそれで良いのだが・・。敬意を表して一言))

>無理数で微分可能→開区間で連続→矛盾→無理数で微分可能ではない
>という証明の流れですよ

ところで、いままでも散々出ているし、>>90などにもあるけど
トマエ関数の改良版が実例としてあって、
有理数の1/q^n で、n>2 で、nを十分大きく取ると、無理数の殆どで微分可能になる。リュービル数だけは、微分不能で残る

この場合、有理数の1/q^nで不連続点は、稠密分散のまま
だから、”無理数で微分可能→開区間(a, b)で連続”のところが、厳密な証明になっていないのでは? と思っています
106
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/02(火) 11:45:40.78 ID:p6PjQh75(7/14) AAS
>>100
ところで、追加質問で悪いが

>まずリュービル数全体は
>Since it is the intersection of countably many such open dense sets
>のようですので
>開集合とは言えませんし実際開集合ではありません
>内点を持たないからです

とすると、リュービル数全体は
「422に書いた定理」中の
「S は内点を持たない閉集合で被覆できる」(非可算に緩和してだが)に当てはまりますか?
108
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/02(火) 12:35:48.94 ID:p6PjQh75(8/14) AAS
>>107
いや、定理を離れて、数学として考えて

1.リュービル数全体は、「S は内点を持たない閉集合で被覆できる」
2.ただし、非可算を要する

ということでいいですね?
111
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/02(火) 12:51:51.69 ID:p6PjQh75(9/14) AAS
>>108 追加

それで、
1.Qは、「内点を持たない閉集合の高々可算和で被覆できる」
2.R\Qは、「内点を持たない閉集合」では、被覆できない。(「内点を持つ開集合の高々可算和で被覆できる」? 当たり前か・・)

ですかね?
114: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/02(火) 13:03:58.93 ID:p6PjQh75(10/14) AAS
>>109-110
レスありがとう
数学的イメージをはっきりさせたかったので・・(^^
115
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/02(火) 13:06:42.96 ID:p6PjQh75(11/14) AAS
>>113
ご丁寧にレスありがとうございます。ちょっと、考えてみます(^^

お手間を取らせて悪いが
で、「422に書いた定理」中の定理1.7の証明中で

「系1.4 により, あるi に対してAiは内点を持つか, もし
くは, あるN,M >= 1 に対してB_N,M は内点を持つかのいずれかである. 各Aiは内点を持たないの
だったから, あるN,M >= 1 に対してB_N,M が内点を持つことになる.
特に, (a, b) ⊆ B_N,M なる開区間(a, b) が取れる.」


B_N,M が内点を持つことになる.
 ↓
(a, b) ⊆ B_N,M なる開区間(a, b) が取れる.

にギャップないですか?
つまり、R−BfがQのような稠密分散集合で、よって、BfがR\Qのような集合になりますと

このような場合、「内点を持つから、開区間(a, b) が取れる」と言えますか?
116: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/02(火) 13:07:39.88 ID:p6PjQh75(12/14) AAS
>>112
C++さん、レスありがとう
深謝!(^^
121
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/02(火) 22:59:26.64 ID:p6PjQh75(13/14) AAS
>>117
あなたは、「ぷふ」さんではなさそうですね
前スレ 592で、「件の定理は無理数で可微分有理数でリプシッツ不連続な関数は存在しないという結論を導いていますよ」と書いた人ですね

>背理法による証明を理解していないのかも知れませんね

定理1.7 (422 に書いた定理)の段階では、背理法はまだ使っていませんよね
背理法は、系1.8の証明からですよ

で、>>115に戻ると

”B_N,M が内点を持つことになる.
 ↓
(a, b) ⊆ B_N,M なる開区間(a, b) が取れる.”

の”反例が、R\Qではないか”と思っています

つまり、R\Qは、内点を持つが、
系1.8の背理法に使えるような開区間(a, b) を取ると、そこにはR−Bfの点が入ることになる(∵R−Bfが稠密だから)

もう少し説明をすると
定理1.7のターゲットは、「系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R」だ

だから、Q vs R\Q(=無理数点)の集合としての性質が問題になる

この場合、Qは、内点を持たない有理数点の加算和。なので、R\Q(無理数)は、内点を持つ集合になる(ベールの範疇定理の典型例)
上記の定理1.7との対応で、QがR−Bfに対応しリプシッツ不連続。R\QがBfに対応しリプシッツ連続だ。

ところで、R\Q(無理数)は、上記の通りで、内点を持つ集合だが、ある開区間(a, b) を取ると、そこには必ずQの点が入る
この性質は、リプシッツだとか微分だとか、関数の性質とは無関係だ

よって、ベールの範疇定理だけでは、
Qの補集合であるR\Q(=無理数点の集合)は、内点を持つ集合までは言えるが、
ある開区間(a, b) を取れるとまでは言えないことがわかる

繰返すが、
”B_N,M が内点を持つことになる.
 ↓
(a, b) ⊆ B_N,M なる開区間(a, b) が取れる.”
は、言えない
122
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/02(火) 23:21:30.13 ID:p6PjQh75(14/14) AAS
>>120

>>>2.R\Qは、「内点を持たない閉集合」では、被覆できない。
>>高々可算個ではできそうにありませんね
>ベールのカテゴリー定理より高々可算個では無理と分かりますね

正しい引用は(>>111より)
2.R\Qは、「内点を持たない閉集合」では、被覆できない。(「内点を持つ開集合の高々可算和で被覆できる」? 当たり前か・・)
(引用終り)

ですね。
ああ、非可算まで広げると、”被覆”の意味が訳分からなくなるので、”可算しばりを入れろ!”ということか・・・(^^
なお、「内点を持つ開集合の高々可算和で被覆できる」は、通常の距離を入れたRが、第二可算的空間あるいは、第一可算的空間ですから・・、当然

https://ja.wikipedia.org/wiki/%E7%AC%AC%E4%BA%8C%E5%8F%AF%E7%AE%97%E7%9A%84%E7%A9%BA%E9%96%93
第二可算的空間
(抜粋)
数学の位相空間論おける第二可算空間(だいにかさんくうかん、英: second-countable space)とは、第二可算公理を満たす位相空間のことである。空間が第二可算公理を満たすとは「その位相が可算な開基を持つ」ということを言う。

「素性のよい」空間のほとんどは第二可算的である。例えば、普通の位相を入れたユークリッド空間 (Rn) がそうである。全ての開球体を考える通常の開基をとるとこれは可算ではないけれども、半径が有理数で中心が有理点であるような開球体全体のなす集合を考えると、これは可算であり、開基も成す。

https://ja.wikipedia.org/wiki/%E7%AC%AC%E4%B8%80%E5%8F%AF%E7%AE%97%E7%9A%84%E7%A9%BA%E9%96%93
第一可算的空間
(抜粋)
数学の位相空間論において、第一可算空間(だいいちかさんくうかん、英: first-countable space)とは、"第一可算公理"を満たす位相空間のこと。位相空間 X が第一可算公理を満たすとは「各点 x が高々可算な近傍からなる基本近傍系(局所基)をもつこと」を指す。

普通に使われる空間のほとんどは第一可算的である。特に、距離空間はすべて第一可算的である。というのは、各点 x に対し、それを中心とする半径 1/n (n は正の整数) の開球の系列は x の可算な基本近傍系となっている。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.049s