[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
178
(7): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 00:05:05.01 ID:miqaDy4s(1/12) AAS
>>145 主義に反するが、おっちゃんのために、PDFから証明をアスキー化して、全文を貼るよ(^^
(文字化けと誤記はご容赦。読みにくいだろうが、そう思ったら右のURLのPDFを嫁め。(^^ https://www.axfc.net/u/3870548?key=Lipschitz 「定理1.7 (422 に書いた定理)」の証明 )

<422 に書いた定理の証明>
定義1.1 一般に, g : R → R とx ∈ R に対して,
lim sup y→x g(y) := inf δ>0 sup 0<|y−x|<δ g(y)
と定義される.
定義1.2 (X,O) は位相空間とする. S ⊆ X は, 高々可算無限個の閉集合Fi ⊆ X が存在して,
・ 各Fiは内点を持たない,
・ S ⊆∪i Fi
が成り立っているとする. このとき,「S は内点を持たない閉集合の高々可算和で被覆できる」と書
くことにする.
定理1.3 (X, d) は空でない完備距離空間とする. 高々可算無限個のFi ⊆ X は,
・ 各Fiは閉集合,
・ X ⊆∪i Fi
を満たすとする. このとき, あるi に対して, Fiは内点を持つ. 証明はベールのカテゴリ定理から即
座に出る.
系1.4 高々可算無限個のFi ⊆ R は,
・ 各Fiは閉集合,
・ R ⊆∪i Fi
を満たすとする. このとき, あるi に対して, Fiは内点を持つ. 証明は前定理からすぐに従う.
補題1.5 f : R → R とx ∈ R は
lim sup y→x |(f(y) − f(x))/(y − x)|< +∞
を満たすとする. このとき, ある正整数N,M >= 1 に対して
∀y, z ∈ R [x − 1/M < y < x < z < x +1/M → |f(z) − f(y)| <= N(z − y)]が成り立つ.

つづく
179
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 00:05:36.46 ID:miqaDy4s(2/12) AAS
>>178 つづき

証明
仮定により,
lim sup y→x |(f(y) − f(x))/(y − x)|< N
を満たす正整数N が取れる.
lim sup y→x |(f(y) − f(x))/(y − x)|= inf δ>0 sup 0<|y−x|<δ |(f(y) − f(x))/(y − x)|
に注意して,
inf δ>0 sup 0<|y−x|<δ |(f(y) − f(x))/(y − x)|< N
ということになるので, あるδ > 0 に対して
sup 0<|y−x|<δ |(f(y) − f(x))/(y − x)|< N
である. 以下, δ > 1/M を満たす正整数M を1 つ取っておく. このとき,
∀y ∈ R [ |y − x| < 1/M → |f(y) − f(x)| <= N|y − x|] ・・・(1)
が成り立つことを示す. |y − x| < 1/M を満たすy ∈ R を任意に取る. もしy = x ならば, 明らか
に|f(y) − f(x)| <= N|y − x| が成り立つ. 以下では, y ≠ x としてよい. よって,
0 < |y − x| < 1/M < δ
となるので, δの定義から,
|(f(y) − f(x))/(y − x)|< N
となる. 特に, |f(y) − f(x)| <= N|y − x| となる. 以上より, (1) が成り立つ. 以上の準備のもとで,
題意を示す. y, z ∈ R であって
x − 1/M < y < x < z < x +1/M
を満たすものを任意に取る. このとき, (1) により
|f(z) − f(y)| <= |f(z) − f(x)| + |f(x) − f(y)| <= N|z − x| + N|x − y| = N(z − y)
が成り立つ(絶対値が外れてN(z − y) になっているのは, y < x < z から出る). よって, 題意が成
り立つ.

つづく
180
(10): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 00:06:03.45 ID:miqaDy4s(3/12) AAS
>>179 つづき

補題1.6 x ∈ R とxi ∈ R (i >= 1) はxi → x (i → +∞) を満たすとする. このとき, 次が成り立つ.
・ ∀y > x, ∃i0 >= 1, ∀i >= i0 [ y > xi ] .
・ ∀y < x, ∃i0 >= 1, ∀i >= i0 [ y < xi ] .
証明は単なる"-δ論法なので省略する.

定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間の
上でリプシッツ連続である.

つづく
181
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 00:07:24.95 ID:miqaDy4s(4/12) AAS
>>180 つづき

証明
仮定から, 高々可算無限個の閉集合Ai ⊆ Rが存在して, 各Aiは内点を持たず, しかもR−Bf ⊆∪i Aiが成り立つ (1) 次に, 天下り的だが, N,M >= 1 に対して
BN,M :={x ∈ R | ∀y, z ∈ R [x − 1/M < y < x < z < x +1/M) |f(z) − f(y)| <= N(z − y)] }
と置く. このとき, Bf ⊆ ∪N ,M>=1BN,M が成り立つことを示す. x ∈ Bf を任意に取る. このと
き, 補題1.5 を満たすN,M >= 1 が存在するので, 明らかにx ∈ BN,M である. よって, 確か
にBf ⊆ ∪N ,M>=1BN,M である. (1) と合わせて, R = Bf [ (R−Bf ) ⊆ (∪N ,M>=1BN,M ) [ (∪i Ai) と
なる. すなわち,
R ⊆ (∪N ,M>=1BN,M ) [ (∪i Ai) ・・・ (2)
となる. 次に, 各BN,M は閉集合であることを示す. x ∈ R とxi ∈ BN,M (i >= 1) はxi → x (i →
+∞) を満たすとする. このとき, x ∈ BN,M が成り立つことを示せばよい. そのためには,
∀y, z ∈ R[x − 1/M < y < x < z < x +1/M ) |f(z) − f(y)| <= N(z − y)]
を示せばよい. さて,
x − 1/M < y < x < z < x +1/M
が成り立つようなy, z ∈ R を任意に取る. xi → x と補題1.6 により, i が十分大きければ
xi − 1/M < y < xi < z < xi +1/M

つづく
182
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 00:07:51.43 ID:miqaDy4s(5/12) AAS
>>181 つづき

が成り立つ. そのようなi を何でもいいから1 つ取ると, xi ∈ BN,M に注意して, BN,M の定義か
ら|f(z) − f(y)| <= N(z − y) が成り立つ. よって, 確かに
∀y, z ∈ R[x − 1/M< y < x < z < x +1/M) |f(z) − f(y)| <= N(z − y)]
が言えた. よって, x ∈ BN,M である. よって, BN,M は閉集合である. すると, (2) の右辺は可算無
限個の閉集合の和ということになるので, 系1.4 により, あるi に対してAiは内点を持つか, もし
くは, あるN,M >= 1 に対してBN,M は内点を持つかのいずれかである. 各Aiは内点を持たないの
だったから, あるN,M >= 1 に対してBN,M が内点を持つことになる. 特に, (a, b) ⊆ BN,M なる開
区間(a, b) が取れる. f は(a, b) 上でリプシッツ連続であることを示す. x, y ∈ (a, b) を任意に取る.
|f(y) − f(x)| <= N|y − x| が成り立つことを示す. 対称性から, x <= y としてよい. よって, 示すべ
きは|f(y) − f(x)| <= N(y − x) である. もしx = y ならば, 明らかに成り立つ. 以下では, x < y と
してよい. M(y −x)/2 < L を満たす正整数L を何でもいいから1 つ取る. [x, y] をL 等分に分割し
て, 等分点をx からy に向かってx = z0 < z1 < < zL = y とする. より詳しくは,
zi= x +(y − x)i/L (0 <= i <= L)
である. 各i ∈ [0,L − 1] に対してci = (zi + zi+1)/2 と置くと, 各i ∈ [0,L − 1] に対して
ci − 1/M < zi < ci < zi+1 < ci +1/M ・・・(3)

つづく
183
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 00:08:18.88 ID:miqaDy4s(6/12) AAS
>>182 つづき

が成り立つことが簡単に確認できる(L の取り方に注意する). ここで,
ci ∈ [zi, zi+1] ⊆ [x, y] ⊆ (a, b) ⊆ BN,M
すなわちci ∈ BN,M であるから, これと(3) 及びBN,M の定義から,
|f(zi+1) − f(zi)| <= N(zi+1 − zi)
が成り立つ. よって,
|f(y) − f(x)| = |f(zL) − f(z0)| =|Σi=0〜L−1 (f(zi+1) − f(zi))|
<= Σi=0〜L−1 |f(zi+1) − f(zi)| <= Σi=0〜L−1 N(zi+1 − zi) = N(y − x)
となる. よって、 f は(a, b) 上でリプシッツ連続である.

つづく
184
(7): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 00:08:43.66 ID:miqaDy4s(7/12) AAS
>>183 つづき

系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない.

証明
存在すると仮定する. 定理1.7 のBf について,
R − Q = (無理数全体) = (f の微分可能点全体) ⊆ Bf
が成り立つので,
R − Bf ⊆ Q = ∪p ∈Q {p} ・・・(1)
である. ここで, 1 点集合{p} (p ∈ Q) は全部で可算無限個あり, 各{p} は内点を持たない閉集合であ
るから, (1) の右辺は内点を持たない閉集合の可算和である. よって, 定理1.7 が使えて, f はある開
区間(a, b) の上でリプシッツ連続である. 特に, f は(a, b) の上で連続である (2) さて, Q はR 上
で稠密だから, (a, b) ∩ Q ≠ Φ である. そこで, x ∈ (a, b) ∩ Q を何でもいいから1 つ取る. (2) より,
f は点x で連続であるが, 一方で, x ∈ Q とf の仮定により, f は点x で不連続である. これは矛
盾. よって, 題意が成り立つ.

つづく
185
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 00:09:56.38 ID:miqaDy4s(8/12) AAS
>>184 つづき

補足定理1.7 の証明のポイントはもちろん, BN,M の作り方にある. x ∈ Bf を任意に取る. このと
き, 補題1.5 の途中計算により, ある正整数N,M >= 1 が存在して
∀y ∈ R [ |y − x| < 1/M → |f(y) − f(x)| <= N|y − x|]
が成り立つのだった. よって,
BN,M := {x ∈ R | ∀y ∈ R [|y − x| < 1/M → |f(y) − f(x)| <= N|y − x|] }
と置いても, Bf ⊆ ∪N ,M>=1BN,M は成立する. ただし, これだとBN,M が閉集合になるとは限らな
くなる. 以下でこのことを見る. BN,M が閉集合になることを示したい. x ∈ R とxi ∈ BN,M (i >=
1) はxi → x を満たすとする. このとき, x ∈ BN,M が成り立つことを示せばよい. そのためには,
∀y ∈ R[|y − x| <1/M → |f(y) − f(x)| <= N|y − x|]
を示せばよい. さて,
|y − x| <1/M
が成り立つようなy ∈ R を任意に取る. xi → x に注意して, i が十分大きければ
|y − xi| <1/M
である. そのようなi を任意に取ると, xi ∈ BN,M に注意して, BN,M の定義から|f(y) − f(xi)| <=
N|y −xi| が成り立つ. i → +∞とすると, もしf が点x で連続ならば, f(xi) → f(x) となるので,
|f(y)−f(x)| <= N|y −x| となる. しかし, f が点x で連続でない場合は, f(xi) → f(x) が成り立つ
とは限らないので, |f(y) − f(x)| <= N|y − x| が出て来ない(工夫すれば出るかもしれないが, 自分
は出せなかった). この時点で, BN,M が閉であることの証明に失敗する. ではどうするかというと,
f(xi) が出現しないようにすればよい. そのためには, そもそもf(x) が出現しないようにすればよ
い. そのためには,
x − 1/M < y < x < z < x +1/M

つづく
186: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 00:10:46.45 ID:miqaDy4s(9/12) AAS
>>185 つづき

が成り立つようなy, z ∈ R に対して
|f(z) − f(y)| <= |f(z) − f(x)| + |f(x) − f(y)| <= N|z − x| + N|x − y| = N(z − y) (*)
という計算を行えばよい. これはつまり, 補題1.5 そのものである. これでf(x) が出現しなくなる
ので,
BN,M :={x ∈ R | ∀y, z ∈ R[x − 1/M < y < x < z < x +1/M → |f(z) − f(y)| <= N(z − y)] }
と置けば希望が見えてくる. そして, これで実際に上手く行くのだった. ちなみに, 自分が(*) の計
算に辿り着いたのは元ネタがある. それは, 次のような補題である.

補題(straddle lemma)
f : R → R は点x ∈ R で微分可能とする. このとき, 次が成り立つ.
∀ε > 0, ∃δ > 0, ∀y, z ∈ R
[ x − δ <= y <= x <= z <= x + δ)→ |f(z) − f(y) − f’(x)(z − y)| <= ε(z − y) ] .
この補題がstraddle (またぐ・またがる) と呼ばれているのは, y とz を「x をまたぐように取る」
からである. そして, (*) の計算は, この補題の証明と同じ考え方を適用したに過ぎない.
結局, 全体としては, 極めてオーソドックスかつ簡単な議論で定理1.7 が証明できたことになる.
QED
以上
187: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 00:11:37.09 ID:miqaDy4s(10/12) AAS
まあ、読みにくいこと、このうえない
はるかにPDFの方が視認性がよい
189
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 20:13:29.17 ID:miqaDy4s(11/12) AAS
>>188
おっちゃん、どうも、スレ主です。
レスありがとう(^^

>>180より)
”定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間(a, b) の
上でリプシッツ連続である.”

この定理1.7の面白さは
”系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない.”(>>184
を著しく拡張しているところだ

つまり、系1.8において、
1)不連続→リプシッツ連続でない
2)微分可能→リプシッツ連続
3)稠密:有理数と無理の稠密性→もっと一般な稠密性(但し、片方は可算無限濃度限定)

の3つの特性で、系1.8を拡張したものが定理1.7になっているってこと

これに匹敵する結果は、>>41-42に書いたが
”Let f:R --> R be such that the sets of points at which f is continuous and discontinuous are each dense in R.
Let E be the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite.
Then E is co-meager in R (i.e. the complement of a first category set).
This was proved in H. M. Sengupta and B. K. Lahiri, "A note on derivatives of a function",
Bulletin of the Calcutta Mathematical Society 49 (1957), 189-191 [MR 20 #5257; Zbl 85.04502]. ”

つまり、一般な稠密性(但し、H. M. Sengupta and B. K. Lahiriは、可算非可算に関係なく)
”the sets of points at which f is continuous and discontinuous are each dense in R.”なのだが
しかし、この discontinuous →リプシッツ連続でないという、上記1)の特性で、定理1.7は拡張されているのだ

そこが、この定理1.7の面白さであり、斬新さだ
成り立てばだがね(^^
190
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 21:56:29.85 ID:miqaDy4s(12/12) AAS
>>189 補足
>3)稠密:有理数と無理の稠密性→もっと一般な稠密性

で、この定理1.7で首肯できないものの一つが、この拡張です
下記にあるようにP532
T(ai)(x) = 0 if x 無理数, a_n if x = m/n 互いに素な有理数

で、a_n =n^k として、kを大きくする
すると、k>2で、どんどん微分可能な領域が増える。最後は、Liouville numbersのみが微分不可で残るという

この結果と、定理1.7の一般な稠密性とが、果たして整合するのかどうか?

現実のQと無理数(R \ Q)とでは、具体的なQと無理数との相性のような絡み合いがあって
Liouville numbersのように、有理数でよく近似できる数(それは微分不可)で
一方、”Diophantine approximation of algebraic irrationals, called Roth’s Theorem”のように、近似限界のある数(代数的数の性質)(それは微分可能)で
無理数にも個性があるんです(下記「Modifications of Thomae’s function」)

だが、そういうことを全部抽象化した結果が、定理1.7なんですよね
まあ、定理1.7はものすごい強い結果だと・・・本当に成立しているのか?
((>>189)H. M. Sengupta and B. K. Lahiriも、そういう結果なんですけどね(^^ )

>>90より)
https://kbeanland.files.wordpress.com/2010/01/beanlandrobstevensonmonthly.pdf
Modifications of Thomae’s function and differentiability, (with James Roberts and Craig Stevenson) Amer. Math. Monthly, 116 (2009), no. 6, 531-535.
(抜粋)
P534
We finish by remarking on some obvious consequences of the previous propositions.
First, for k <= 2, T(1/n^k ) is nowhere differentiable. By Roth’s Theorem, if
α(an) > 2, T(ai ) is differentiable on the set of algebraic irrational numbers. T(1/n^9) is
differentiable at all the algebraic irrationals, e, π, π^2, ln(2), and ζ(3), and not differentiable
on the set of Liouville numbers. Finally, if α(ai ) = ∞, T(ai ) is differentiable on
the set of all non-Liouville numbers. Since the set of Liouville numbers has measure
zero, T(ai ) is differentiable almost everywhere.
(引用終り)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.039s