[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
374(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 06:52:41.66 ID:dLTvfhGd(1/18) AAS
>>373
ぷ
375(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 07:35:26.50 ID:dLTvfhGd(2/18) AAS
>>367 追加コメント
さて、f(x) = 0 if x is irrational→f(x) = F(x) if x is irrationalとする
The modefied ruler function f is defined by
f(x) = F(x) if x is irrational,
f(0) = 1, and
(さらに有理数で場合けして)
f(x) = F(x) if q>= m, x = p/q ∈Q
f(x) = F(x)+ 1/w(q) if q< m, x = p/q ∈Q
where p and q are relatively prime integers with q > 0.
ここに、 F(x) は、簡単のために、解析函数で多くの多項式や初等関数のように、無限大のみに極を持つとする。(有限の範囲に極があっても問題ないが、記述が複雑になる)
また、他の条件は、すべて上記に同じ
ある無理数点zとその近くの有理点x = p/q (q< m)に対して
(f(z) - f(x) )/(z - x) = (F(z)- F(p/q)- 1/w(q))/(z - p/q ) となる
”F(z)- F(p/q)”の部分は、解析函数なので、p/q→zのとき、”F(z)- F(p/q)”→0 になるので、この場合は、上記のF(x) ≡0 の議論と変わらずそのまま成り立つ
よって、このような、有理数 x = p/q ∈Q の場合のみ、”= F(x)+ 1/w(q)”と定めるような、いわゆる除去可能不連続関数とする場合の議論は、
F(x) ≡0 の議論で尽くされている
つづく
376(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 07:38:20.41 ID:dLTvfhGd(3/18) AAS
>>375 つづき
さらに
1/w(q)→1/q^ν としてみよう
The modefied ruler function f is defined by
f(x) = 0 if x is irrational,
f(0) = 1, and
(さらに有理数で場合けして)
f(x) = 0 if q>= m, x = p/q ∈Q
f(x) = 1/q^ν if q< m, x = p/q ∈Q
where p and q are relatively prime integers with q > 0.
ここに、ν>=0の実数とする
この場合も、mが有限の値の場合、不連続点は、分母q がある値m以下の場合のみの有限個になる
この場合も、「定理1.7 (422 に書いた定理)」が常に成り立ち
”R−Bf が内点を持たない閉集合の(有限個の)可算和で被覆でき、 f はある開区間の上でリプシッツ連続である.”となる
しかし、m→∞を考えると、f(x) = 1/q^νの場合のp/qは、任意のQの元まで拡大される
この場合
1)ν= 0の場合、いわゆるディリクレ関数になり、f(x)は至る所不連続
2)ν= 1の場合、いわゆるトマエ関数になり、f(x)は無理数で連続、有理数で不連続となる
3)ν>= 2の場合、f(x)は無理数の多くで微分可能(微分不可能な無理数点も残る)、有理数で不連続
となる
なにが言いたいかというと、
f(x)の無理数側の決めは不変だが、有理数側の決めが変わることによって、f(x)全体の特性(連続、不連続、微分可否など)が全く変わってしまうということ
これで、「定理1.7 (422 に書いた定理)」の不備が見えるだろう
「定理1.7 (422 に書いた定理)」の証明は、無理数側(定理ではBf側)の関数しか扱っていない。
それで証明が完了としている。が、それは上記数理に反するってことだ
以上
377(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 07:43:41.60 ID:dLTvfhGd(4/18) AAS
>>369 訂正の訂正
>>368の訂正
m→∞を考えると、まずqは任意のQの元まで拡大される *)
↓
m→∞を考えると、まずp/qは任意のQの元まで拡大される *)
↓
m→∞を考えると、まずf(x) = 1/w(q) の場合のp/qは、任意のQの元まで拡大される *)
かな?(^^ (>>376を書いていて気付いたよ)
379(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 08:40:45.35 ID:dLTvfhGd(5/18) AAS
逝ってよし(^^
401(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 20:14:11.83 ID:dLTvfhGd(6/18) AAS
>>399
>スレ主に分かり易いのはコーシーの剛性定理だろう。
おっちゃん、19世紀の人間かい?
ところで、下記にen.wikipediaにいろいろあるが
コーシーは、7番目”7.Cauchy's theorem on geometry of convex polytopes states that a convex polytope is uniquely determined by the geometry of its faces and combinatorial adjacency rules.”
やね
で、1番目と2番目見えるか?(^^
”1.Harmonic functions ・・・.”
”2.Holomorphic functions ・・・.”
1番目、2番目とも、1変数解析函数からみよ(^^
https://en.wikipedia.org/wiki/Rigidity_(mathematics)
Rigidity (mathematics)
(抜粋)
In mathematics, a rigid collection C of mathematical objects (for instance sets or functions) is one in which every c ∈ C is uniquely determined by less information about c than one would expect.
The above statement does not define a mathematical property. Instead, it describes in what sense the adjective rigid is typically used in mathematics, by mathematicians.
Some examples include:
1.Harmonic functions on the unit disk are rigid in the sense that they are uniquely determined by their boundary values.
2.Holomorphic functions are determined by the set of all derivatives at a single point.
A smooth function from the real line to the complex plane is not, in general, determined by all its derivatives at a single point, but it is if we require additionally that it be possible to extend the function to one on a neighbourhood of the real line in the complex plane. The Schwarz lemma is an example of such a rigidity theorem.
つづく
402(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 20:14:35.24 ID:dLTvfhGd(7/18) AAS
>>401 つづき
3.By the fundamental theorem of algebra, polynomials in C are rigid in the sense that any polynomial is completely determined by its values on any infinite set, say N, or the unit disk. By the previous example, a polynomial is also determined within the set of holomorphic functions by the finite set of its non-zero derivatives at any single point.
4.Linear maps L(X, Y) between vector spaces X, Y are rigid in the sense that any L ∈ L(X, Y) is completely determined by its values on any set of basis vectors of X.
5.Mostow's rigidity theorem, which states that the geometric structure of negatively curved manifolds is determined by their topological structure.
6.A well-ordered set is rigid in the sense that the only (order-preserving) automorphism on it is the identity function. Consequently, an isomorphism between two given well-ordered sets will be unique.
7.Cauchy's theorem on geometry of convex polytopes states that a convex polytope is uniquely determined by the geometry of its faces and combinatorial adjacency rules.
8.Alexandrov's uniqueness theorem states that a convex polyhedron in three dimensions is uniquely determined by the metric space of geodesics on its surface.
See also
Uniqueness theorem
Structural rigidity, a mathematical theory describing the degrees of freedom of ensembles of rigid physical objects connected together by flexible hinges.
This article incorporates material from rigid on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.
(引用終り)
つづく
403(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 20:15:20.19 ID:dLTvfhGd(8/18) AAS
>>402 つづき
https://en.wikipedia.org/wiki/Harmonic_function
Harmonic function
https://ja.wikipedia.org/wiki/%E8%AA%BF%E5%92%8C%E9%96%A2%E6%95%B0
調和関数
(抜粋)
数学における調和関数(ちょうわかんすう、英: harmonic function)は、ラプラス方程式を満足する二回連続的微分可能な関数のことをいう。
調和関数に関する重要な問題はディリクレ問題である。ディリクレ問題の解決方法にはいくつかあるが、その中でも重要な一般的方法はディリクレの原理である。
20世紀には、ウィリアム・ホッジ(英語版)、ジョルジュ・ド・ラーム(英語版)、小平邦彦らが調和積分論の発展の中心的な役割を果たした。
性質
複素関数と2次元調和関数
複素数 z = x + iy (x, y ∈ R) を変数とする複素 1 変数複素関数 f?(z) について、これを実 2 変数の関数として書き直すことができる。
実 2 変数複素関数 w(x, y) = f(z) を、実部と虚部に分解すると w(x, y) = u(x, y) + iv(x, y) (u, v ∈ R), 実部と虚部に対応する実 2 変数の実関数として u(x, y) と v(x, y) が得られる。このとき、w が複素微分可能であれば u(x, y), v(x, y) は実 2 変数の調和関数となる。 コーシー・リーマンの関係式より、2 つの関数 u(x, y), v(x, y) は
(略)
を満たすが、これをベクトル解析の言葉で書き直せば grad u(x, y) = (∂y, −∂x)Tv(x, y) となり、この湧き出し div?grad u(x, y) = Δ u(x, y) はゼロなので、関数 u(x, y) は 2 次元のラプラス方程式を満たす調和関数であることが分かる。同様の方法でまた v(x, y) も調和関数であることが導かれる。すなわち、正則な複素関数の実部と虚部は実調和関数となる。
逆に、2 つの実調和関数がコーシー・リーマンの関係式を満たすとき、それらは共役であるといい、共役な実調和関数の対u(x, y), v(x, y) が与えられると、z = x + iy を変数とする正則関数f(z) = u(x, y) + iv(x, y) が得られる。単連結領域上の実調和関数は共役調和関数を持つ(すなわち正則関数の実部あるいは虚部である)。
(引用終り)
つづく
404(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 20:16:01.98 ID:dLTvfhGd(9/18) AAS
>>403 つづき
https://en.wikipedia.org/wiki/Holomorphic_function
Holomorphic function
(抜粋)
For Zariski's theory of holomorphic functions on an algebraic variety, see formal holomorphic function.
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighborhood of every point in its domain.
The existence of a complex derivative in a neighborhood is a very strong condition, for it implies that any holomorphic function is actually infinitely differentiable and equal to its own Taylor series (analytic). Holomorphic functions are the central objects of study in complex analysis.
(引用終り)
https://ja.wikipedia.org/wiki/%E6%AD%A3%E5%89%87%E9%96%A2%E6%95%B0
正則関数
複素解析において、正則関数(せいそくかんすう、holomorphic function)とは、ガウス平面あるいはリーマン面上のある領域の全ての点で微分可能であるような複素変数複素数値の関数のことである。
(引用終り)
つづく
406: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 20:16:31.51 ID:dLTvfhGd(10/18) AAS
>>404 つづき
https://en.wikipedia.org/wiki/Rigidity
Rigidity
(抜粋)
Mathematics and physics
・Stiffness, the property of a solid body to resist deformation, which is sometimes referred to as rigidity
・Structural rigidity, a mathematical theory of the stiffness of ensembles of rigid objects connected by hinges
・Rigidity (electromagnetism), the resistance of a charged particle to deflection by a magnetic field
・Rigidity (mathematics), a property of a collection of mathematical objects (for instance sets or functions)
・Rigid body, in physics, a simplification of the concept of an object to allow for modelling
・Rigid transformation, in mathematics, a rigid transformation preserves distances between every pair of points
Other uses
・Real rigidity, and nominal rigidity, the resistance of prices and wages to marketchanges in macroeconomics
・Ridgid, a brand of tools
(引用終り)
以上
407(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 20:23:20.12 ID:dLTvfhGd(11/18) AAS
>>405
べつに〜(^^
あんたには、永遠に時枝は分らないのかもな・・・
まあ、確率過程論かランダム現象の数理の講義の最初の3回か、同テキストの最初の10ページほどを読めば、時枝不成立は分る
普通それで分るんだが・・、数学セミナーは、初心者も読むし・・
まあ、日本の学術風土として、ああいう有名数学者のバカ記事には、いちゃもんを付けないマイルドな(世間的には”おとな”とか)空気が日本にはある
だから、おれみたいな無頼が文句付けたわけよ
間違っているのは、あんたと時枝だよ
分ったら消えな(^^
409: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 20:44:29.87 ID:dLTvfhGd(12/18) AAS
>>399
>私自身は数学原論を直接読んだことはないが、
なんだ、勘違いと思ったら・・、勘違い以前
妄想だったんだね〜(^^
410: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 20:49:40.71 ID:dLTvfhGd(13/18) AAS
>>408
>自分で嘘撒き散らすのは気にならないけど
>他人にホモネタ/スカトロネタ/エロネタなど下ネタAA撒き散らされたときは、ご立腹だったよな?
それほど、”ご立腹”ではなかったが、困ったな〜と
まあ、所詮2CH(いま5CHだが)
アラシも”ありあり”だが、あれには参ったよ
まだ、¥さんの野焼きの方がましだと
なだめたり、すかしたり、大変だったのは確かだな
まあ、¥さんの野焼きなら放置だが
あれは、放置だけでは、ちょっとまずいと思ったりしたね(^^
411: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 21:03:15.59 ID:dLTvfhGd(14/18) AAS
>>408
マジレスしておくと
1.時枝問題(数学セミナー201511月号の記事)。雑誌の発売が、201510月
2.当時→今年(2年経過):1年→3年、2年→4年、3年→M1年、4年→M2年
3.で、大学では自然と、時枝不成立は分る。講義(確率過程論かランダム現象の数理)を受けたり、教員(院生含む)に教えて貰ったり、先輩に教わったり
4.だから、2016年の前半くらいが、一番論敵が多かった。だが、どんどん減った。
5.いま、理解できずに残っているのは、あんたくらい。(ピエロがどうなったか知らないが、自得したのか撤退したのか・・)
あんたも、もし大学に居れば、「ぷふ」さんみたいな人に、もっと丁寧に教えて貰えたろうに
412: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 21:12:14.48 ID:dLTvfhGd(15/18) AAS
>>377 訂正の訂正の訂正
>>368の訂正
m→∞を考えると、まずqは任意のQの元まで拡大される *)
↓
m→∞を考えると、まずp/qは任意のQの元まで拡大される *)
↓
m→∞を考えると、まずf(x) = 1/w(q) の場合のp/qは、任意のQの元まで拡大される *)
↓
m→∞を考えると、まずf(x) = 1/w(q) の場合のp/qは、区間[0, 1]の任意のQの元まで拡大される *)
かな?(^^ (>>366で、”簡単のために、区間[0, 1]を考える”と書いたことを忘れていた。まあ、”(同じことを、区間[n, n+1] (nは整数)で考えれば、実数R全体に展開できる)”と書いておいたから、全くの間違いではないが)
415: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 23:02:35.18 ID:dLTvfhGd(16/18) AAS
>>413-414
前にも似たことを書いたが
一般の世の中で、人の評価とは難しいもので、相対評価が基本なのよ
不勉強のアホバカは、プロ数学者比とか、世の秀才天才比だ
別に時枝程度は、アホバカでも不成立は分る
あんなのは、初歩の初歩だよ
416(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 23:05:33.32 ID:dLTvfhGd(17/18) AAS
そもそも、数学セミナーをなんと心得ているのかね?
基本、高校数学に毛の生えた程度だろ?
そういう読者層に、ガセ記事はいかんよな、時枝先生・・
417: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 23:07:12.68 ID:dLTvfhGd(18/18) AAS
毛の生えた程度といっても、理系の数学だから、文系比ではかなり難しいだろうがね
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.034s