[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
258: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 07:51:44.95 ID:KgoytC9i(1/15) AAS
>>255-257
(>>217)
http://www.suri-joshi.jp/enjoy/rational_point_of_the_quadratic_curve/
2次曲線の有理点 数理女子さん (多分2017)
で、冒頭の節は
「2次曲線とは一般的な方程式で
f(x,y)=a1x^2+a2xy+a3y^2+a4x+a5y+a6=0,(a1,・・・,a6∈R)
という形で表される曲線です。」
と始まっている
で、途中から
「以下では2次曲線がQ上定義された場合、すなわち a, b, c∈Qの場合のみ考えます。」
と変わった
だから、もともとは、(a1,・・・,a6∈R)だったでしょ
259(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 08:20:11.67 ID:KgoytC9i(2/15) AAS
>>255
"実力が伴って無い"は、全く正しい(^^
が、https://www.axfc.net/u/3870548?key=Lipschitz 「定理1.7 (422 に書いた定理)」(>>145)とその証明不成立を主張したのは
私スレ主と、前スレで
401 名前:132人目の素数さん[] 投稿日:2017/12/22(金) 13:35:59.80 ID:zkh22JUH [1/2]
どっちもどっち
ID:KNjgsEZnはただの基地外
(引用終り)
と言った人の二人だけ
(>>180-183)の「定理1.7 (422 に書いた定理)」のどこがまずいかというと、
Bf自身と、Bfを被覆するBN,Mとの区別がついていないってことだ
Bfを被覆するBN,Mについて論じて、それが、即Bf自身についても成り立つと思ってしまった
この場合はそうじゃない。
補集合 R−Bf が、有理数Qのように稠密分散されている場合は、Bf自身も内点を持たないし開区間(a, b)など取れない(言われて見れば当たり前)
他の理論の被覆と混同したんだろう
集合の被覆では、被覆する集合と被覆される集合との関係は、他の理論の被覆とは違う(>>212)
ただ、間違いは間違いだから、そこははっきりさせないと数学じゃないが
この証明を書いた人は、おれより大分レベル上で、実力あるよ
また、証明は天才大数学者でも間違うことがあるから、ドンマイだ
>色々なトピックに手をだすのはあまり良くない
ここは、”雑談スレ”という定義だよ
260(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 09:22:06.80 ID:KgoytC9i(3/15) AAS
”実平面の中には有理点がびっしりと詰まっているので、有理点を避けて通る直線なんて無いような気がしてしまうかもしれません。
しかし、有理点を持たない直線(1次関数)も、実はいっぱい存在するのです。"
なんで、不思議じゃないのかね?
有理点が、稠密に、びっしりと詰まっているんだよ?
264: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 11:39:17.26 ID:KgoytC9i(4/15) AAS
>>262
ちがうよ
アホバカだ
アホ&バカです(^^
266: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 13:05:56.64 ID:KgoytC9i(5/15) AAS
ごうろうさん(^^
267(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 16:28:25.09 ID:KgoytC9i(6/15) AAS
>>259 追加
追加を書いておく
「系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない.」(>>184)
このような”f : R → R は存在しない”という理由は、
無理数側にあって、 無理数側に微分不可のみならず、>>245にあるように
”any specified pointwise modulus of continuity condition” & ”at least one of the four Dini derivates of f is infinite”
なる集合Eがあって、”E is co-meager in R (i.e. the complement of a first category set).”となってしまうこと
だから、微分不可の集合は、「高々可算ではおさまらず、非可算濃度になる」と。それが”系1.8 の関数f : R → Rが存在しない”理由なのだ(決して”開区間(a, b)”が存在するからではない )
つづく
268(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 16:30:21.37 ID:KgoytC9i(7/15) AAS
>>267 つづき
だから、(>>180)
「定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間の上でリプシッツ連続である.」
で、有理数Qを想定して、仮定の”R−Bf が内点を持たない閉集合の高々可算和で被覆できるならば”としたところは、うなづけるが
結論は、(>>245より)集合E:”any specified pointwise modulus of continuity condition” & ”at least one of the four Dini derivates of f is infinite”
が出来て、”E is co-meager in R (i.e. the complement of a first category set).”を、導くべしってことじゃないかな?
だから、証明の大きな方向が間違っている。
「ある開区間の上でリプシッツ連続である」を導くのではなく
「R−Bfは、非可算集合(co-meager in R (i.e. the complement of a first category set))を含む」を証明すべきだと
例えば、(>>90より)下記のProposition 3.1.の証明の方向を目指すべき
https://kbeanland.files.wordpress.com/2010/01/beanlandrobstevensonmonthly.pdf
Modifications of Thomae’s function and differentiability, (with James Roberts and Craig Stevenson) Amer. Math. Monthly, 116 (2009), no. 6, 531-535.
(抜粋)
Proposition 3.1. Let f be a function on R that is positive on the rationals and 0 on the irrationals.
Then there is an uncountable dense set of irrationals on which f is not differentiable.
(引用終り)
つづく
269(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 16:48:13.57 ID:KgoytC9i(8/15) AAS
>>268 つづき
だから、定理1.7は、二つに分けて
1.R−Bfが稠密でなく、Bfがある開区間(a, b) を含む場合
2.R−Bfが稠密で、Bfが全く開区間(a, b) を含まない場合
とすべき
1.の場合、”f はある開区間の上でリプシッツ連続である.”は自明。ほとんど、証明の必要もない
2.の場合、「非可算無限の集合E:”any specified pointwise modulus of continuity condition” & ”at least one of the four Dini derivates of f is infinite”が、存在することになるので、そのようなfは存在しえない」のような方向を目指すべき
2.の場合をさらに細分化する(>>194を一部修正)
R−Bf がR中で稠密な場合を更に、4つに細分する
a)R−Bfが不連続、Bfが可微分(これが系1.8に当たる)
b)R−Bfが不連続、Bfが一般のリプシッツ連続(除く可微分)*)
c)R−Bfが一般の不リプシッツ連続(除く不連続)*)、Bfが可微分
d)R−Bfが一般の不リプシッツ連続(除く不連続)*)、Bfが一般のリプシッツ連続(除く可微分)*)
(注*)一般のリプシッツ連続とはlim sup y→x |(f(y) − f(x))/(y − x)|< +∞を満たすこと、一般の不リプシッツ連続とはlim sup y→x |(f(y) − f(x))/(y − x)|= +∞を満たすこと)
系1.8は、定理1.7中の上記a)の場合。b)は下記。よって、a)b)のみが、既存の別証明がある*)。しかし、c)d)の2ケースは、既存の証明は見つかっていない
*)b)は、(>>189)H. M. Sengupta and B. K. Lahiriの結果より
”Let E be the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite.
Then E is co-meager in R (i.e. the complement of a first category set).”が成り立つことが分っている
繰返すが、c)d)の2ケースで、有理数Qを想定して、R−Bf がR中で稠密かつ可算濃度の集合の場合に、ケースc)d)のような関数f : R → Rが存在するか否か
そこが、まだ不明。
以上
273(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 18:11:53.81 ID:KgoytC9i(9/15) AAS
>>270-272
おっちゃん、どうも、スレ主です。
レスありがとう
>自説にこだわってばかりでは意味ない。
>間違いの連発を繰り返すだけ。
おっちゃんらしいな
おれは、極力主張の裏付け文献を付けているので、ほとんど自説ではない
間違いは連発したが、
https://www.axfc.net/u/3870548?key=Lipschitz 「定理1.7 (422 に書いた定理)」(>>145)とその証明不成立の主張だけは、間違いなかったろ?
274(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 18:23:03.57 ID:KgoytC9i(10/15) AAS
スレチだが、豊島将之八段が、第1局勝利
https://www.youtube.com/watch?v=_o_AaI2mk-w
久保利明王将vs豊島将之八段 第67期王将戦第1局二日目ハイライト 元奨励会員アユムの将棋実況 2018/01/07
280(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 21:10:10.29 ID:KgoytC9i(11/15) AAS
>>269 追加
突然の引用だが
https://ja.wikipedia.org/wiki/%E4%B8%8D%E9%80%A3%E7%B6%9A%E6%80%A7%E3%81%AE%E5%88%86%E9%A1%9E
不連続性の分類
(抜粋)
ある関数がその定義域内のある点で連続でないとき、その関数は不連続性 (discontinuity) を有する。関数の不連続点全体の成す集合は離散集合の場合もあるし、稠密集合の場合もある。場合によっては定義域全体と同じとなるかもしれない。
本項目では、最も単純な実一変数で実数を値にとる函数の場合における不連続性の分類を述べる。
不連続性の分類
1.可除不連続点: L? と L+ が有限確定(存在して有限)で相等しいが f(x0) ≠ L であるとき、f(x) は x = x0 に除去可能な不連続点 (removable discontinuity) を持つという。f(x0) の値を変更して「x = x0 においても連続であるようにする」ことができるという意味でこの不連続性は除きうる。
関数の不連続点の集合
・函数の連続点の全体からなる集合は開集合の可算個の交わり(Gδ-集合)である。また不連続点の全体は閉集合の可算個の合併(Fσ-集合)である。
・単調関数の不連続点は高々可算である。これをフローダの定理(英語版)という。
・トマエ函数は、全ての有理数の点で不連続だが、全ての無理数の点で連続である。
・ディリクレ函数として知られる、有理数全体の集合の指示函数は至る所不連続である。
(引用終り)
https://ja.wikipedia.org/wiki/%E6%8C%87%E7%A4%BA%E9%96%A2%E6%95%B0
指示関数
(抜粋)
数学において指示関数(しじかんすう、英: indicator function)、集合の定義関数[1]、特性関数(とくせいかんすう、英: characteristic function)は、集合の元がその集合の特定の部分集合に属するかどうかを指定することによって定義される関数である。
(引用終り)
つづく
281(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 21:10:58.54 ID:KgoytC9i(12/15) AAS
>>280 つづき
ところで、下記は、指示関数そのものではないが、R中の部分集合Bfとその補集合R−Bfに分けて、関数値を決めていると考えることができる
(>>268)
https://kbeanland.files.wordpress.com/2010/01/beanlandrobstevensonmonthly.pdf
Modifications of Thomae’s function and differentiability, (with James Roberts and Craig Stevenson) Amer. Math. Monthly, 116 (2009), no. 6, 531-535.
の記載より(抜粋)
2. MODIFIED THOMAE FUNCTION.
Let (ai) be a sequence of reals decreasing to zero. Define the modified Thomae
function with respect to (ai) as follows:
T(ai)(x)
= 0 if x ∈ R \ Q,
= an if x = m/n where m and n are coprime,
= 1 if x = 0.
Since limn an = 0, T(an) is continuous on the irrationals. The faster the sequence (ai)
tends to zero, the larger the set of irrationals on which T(ai) will be differentiable.
3. A DENSE SET. While attempting to prove that T(1/n^2) is differentiable on the irrationals,
we discovered that quite the opposite is actually true. In fact, as the following
proposition indicates, functions that are zero on the irrationals and positive on the rationals
will always be non-differentiable on a rather large set.
Proposition 3.1. Let f be a function on R that is positive on the rationals and 0 on the irrationals.
Then there is an uncountable dense set of irrationals on which f is not differentiable.
(引用終り)
つづく
282: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 21:12:26.56 ID:KgoytC9i(13/15) AAS
>>281 つづき
この”function on R that is positive on the rationals and 0 on the irrationals. ”で考えてみると
「0 on the irrationals」の部分は、不変というか動かせない。
動かせるのは、「positive on the rationals」の方のみで、「= an if x = m/n where m and n are coprime,」の部分のみ。
でさらに考えてみると、
「= an if x = m/n where m and n are coprime,」で、an:positive or an=0 の二択問題。(一般性を失わず負数は除外するとして)
an=0の場合、この点(有理点)では連続になる。
が、an:positiveの場合、この点(有理点)では不連続であって、それ以外の選択肢例えば、「連続であるがリプシッツ連続ではない」ということは、あり得ない
繰返すが、Proposition 3.1. のような、「a function on R that is positive on the rationals and 0 on the irrationals. 」という規定では、
an:positive or an=0 の二択で、それぞれ不連続か連続かの二択で、それ以外の選択肢は、あり得ない
ところで、上記で、T(ai)(x) = F(x) if x ∈ R \ Q において、ここに、F(x)が解析関数なり、微分可能関数を取ったとしよう
そのときは、
=F(x)+ an if x = m/n where m and n are coprime,
=F(x)+ 1 if x = 0.
と考えれば、いままでの議論がそのまま踏襲できる。(つまり、"F(x)=0 if x ∈ R \ Q "の場合だけで、 微分や連続についての議論は尽くされていることになる)
(なお、このような、有理数と無理数とに分けて、それぞれ異なる方式で値を決める関数は、上記、”不連続性の分類(wikipedia)”の「可除不連続点」(除きうる不連続点)しかなりえない)
なので、結局、c)d)の2ケースのR−Bfが”一般の不リプシッツ連続(除く不連続)*)”の場合は、考える余地がないように思う
以上
283: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 21:25:45.31 ID:KgoytC9i(14/15) AAS
>>279
C++さん、どうも。スレ主です。
久保王将は、加古川でしたね
年末のNHKラジオ(全国放送?)で、聞きましたよ
(下記youtube)
https://ja.wikipedia.org/wiki/%E4%B9%85%E4%BF%9D%E5%88%A9%E6%98%8E
久保利明
(抜粋)
久保 利明(くぼ としあき、1975年8月27日 - )は、将棋棋士。棋士番号は207。淡路仁茂九段門下。兵庫県加古川市出身。県立加古川南高校中退[1]。棋王と王将のタイトルを獲得。竜王戦1組通算5期、名人戦A級通算9期。日本将棋連盟棋士会副会長(2015年6月 - )。
(引用終り)
https://www.youtube.com/watch?v=5y3WE1lfyzs
2017年11月11日放送 NHKラジオ第1「かんさい土曜ほっとタイム」ほっと人物ファイル 将棋棋士 久保利明
285(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/08(月) 21:31:33.67 ID:KgoytC9i(15/15) AAS
>>276-277
"定義1.2 (X,O) は位相空間とする."の部分は、なにかのテキストから引いていると思いました。(それを、いじる必要もないだろうし)
で、Xとしては、この「定理1.7 (422 に書いた定理)」では、R及びその部分集合のことでしょう
位相Oも、この場合、通常のアルキメデス距離から決まる位相でいいんでしょう
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.041s