[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
271(2): 132人目の素数さん [sage] 2018/01/08(月) 17:45:37.92 ID:8Ag0p06c(2/3) AAS
じゃ、おっちゃん寝る。
382: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 09:57:59.92 ID:clSPRjXH(2/11) AAS
>>380
話は逆で
(>>376に書いた通りだが)
(>>180)”定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間の
上でリプシッツ連続である.”
で、
1)補集合R−Bfが、”が内点を持たない閉集合の可算”有限”和で被覆できるならば、 f はある開区間の上でリプシッツ連続である.”は、正しい
しかし
2)補集合R−Bfが、”が内点を持たない閉集合の”稠密”分散可算無限和で被覆できるならば、 f はある開区間の上でリプシッツ連続とはできない.”が、正しい
補足
1)補集合R−Bfが主に有理数Qで、Bfが主に無理数( R\Q)を想定したもの
2)有理数Qが稠密である以上、無理数のみからなる開区間(a, b)など取れるはずもない
中学校レベルの話だろう
453: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/13(土) 12:01:09.92 ID:rUYSYDib(12/17) AAS
>>450 補足
>一つの根拠が、Chris Hardin and Alan Taylor’s paperに行き着く
>だが、これが間違いだったと、彼らが自分達が後の論文で訂正しているよ(参考>>446-447)
>それは、過去すれ47に書いた
これだな
現代数学の系譜 工学物理雑談 古典ガロア理論も読む47
2chスレ:math
(抜粋)
スレ46 2chスレ:math
「Taylor氏らは、[HT08b] の結論を否定している。([HT09] および(成書)The Mathematics of Coordinated Inference: A Study of Generalized Hat Problems )」
つまりは、”Corollary 3.4 does tell us that the μ-strategy will be correct at t with probability 1.”(>>148)は、「数学的に無価値」でしたということですよ(^^
(引用終り)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.041s