[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
27(1): 132人目の素数さん [] 2017/12/28(木) 16:41:58.83 ID:XpoKjxLL(3/6) AAS
[続き]
しかし、f が点 x で連続であることの "実際の証明" は、ここでは全く書いてないことに注意せよ。
従って、お前が実際に言っていることは、
「如何なる証明を考えようとも、ケース1,2 による場合分けをスレ主の方から改めて持ち出すことによって、
ケース2がなんか変なので、その証明は最初から "点xで連続の場合" しか考慮してないことが露呈する」
と言っていることになる。むろん、このような主張は論理が滅茶苦茶で問題外である。
そして、この滅茶苦茶な論法は、「 P → Q 」の形をした如何なる定理にも適用可能である。
以下、P と Q は何らかの命題であり、「 P → Q 」という形の命題が真であることが証明済みであるとする。
すると、スレ主の滅茶苦茶な言い分によれば、次のように言えてしまう。
―――――――――――――――――――――――――――――――――――――――――――――――――
P が成り立つとする。Q が成り立つことを示したい。以下のように場合分けして示す。
ケース1:Q が成り立つ場合に、Q が成り立つことを示す。
ケース2:Q が成り立たない場合に、Q が成り立つことを示す。
しかし、ケース2では、Q が成り立たない場合を仮定しておきながら、結論で「Qが成り立つ」を導くのは、なんか変である。
よって、P→Q の如何なる証明を持ち出そうとも、その証明は「最初から Q が成り立つ場合しか考慮してない」ことが露呈する。
―――――――――――――――――――――――――――――――――――――――――――――――――
このように、お前の滅茶苦茶な論法を使えば、「 P → Q 」の形をした命題の如何なる証明も、
ケース1,2による場合分けを持ち出すことによって、「最初から Q の場合しか考慮してない」と
批判することが可能になってしまう。すなわち、お前にとっては、「 P → Q 」の形をした如何なる命題も、
全く受け入れられない命題となってしまう。
実際には、お前の頭がいかにポンコツであるかが露呈しているだけである。
[続く]
401(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/11(木) 20:14:11.83 ID:dLTvfhGd(6/18) AAS
>>399
>スレ主に分かり易いのはコーシーの剛性定理だろう。
おっちゃん、19世紀の人間かい?
ところで、下記にen.wikipediaにいろいろあるが
コーシーは、7番目”7.Cauchy's theorem on geometry of convex polytopes states that a convex polytope is uniquely determined by the geometry of its faces and combinatorial adjacency rules.”
やね
で、1番目と2番目見えるか?(^^
”1.Harmonic functions ・・・.”
”2.Holomorphic functions ・・・.”
1番目、2番目とも、1変数解析函数からみよ(^^
https://en.wikipedia.org/wiki/Rigidity_(mathematics)
Rigidity (mathematics)
(抜粋)
In mathematics, a rigid collection C of mathematical objects (for instance sets or functions) is one in which every c ∈ C is uniquely determined by less information about c than one would expect.
The above statement does not define a mathematical property. Instead, it describes in what sense the adjective rigid is typically used in mathematics, by mathematicians.
Some examples include:
1.Harmonic functions on the unit disk are rigid in the sense that they are uniquely determined by their boundary values.
2.Holomorphic functions are determined by the set of all derivatives at a single point.
A smooth function from the real line to the complex plane is not, in general, determined by all its derivatives at a single point, but it is if we require additionally that it be possible to extend the function to one on a neighbourhood of the real line in the complex plane. The Schwarz lemma is an example of such a rigidity theorem.
つづく
499(1): 132人目の素数さん [sage] 2018/01/14(日) 18:11:03.83 ID:OGysNULO(9/9) AAS
今日はもう、おっちゃん寝る。
651: 132人目の素数さん [sage] 2018/01/21(日) 10:39:00.83 ID:hREHM7MH(13/15) AAS
>>648
>だから、定理1.7は、”R−Bf は、R中で稠密ではない”場合のみしか適用できない
>これは良いよね
ぜんぜん良くない。息をするように間違えるゴミクズ。キチガイ。
お前のその理屈は、俺が >>647 >>649 で書いたことそのものである。
お前は何かを盛大に勘違いしている。>647 >649 をよく読め。
>だから、”系1.8 有理数の点で不連続”(>>643)の場合は、適用外
息をするように間違えるゴミクズ。キチガイ。
お前のその理屈は、俺が >647 >649 で書いたことそのものである。
お前は何かを盛大に勘違いしている。>647 >649 をよく読め。
繰り返しになるが、お前は「 P ならば Q 」の形をした命題全般について、正しく認識できていない。
レベルが低すぎる。問題外。キチガイ。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.040s