[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
82
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/01(月) 17:17:30.46 ID:dCRrvhl7(18/27) AAS
>>81 つづき

で、”a nonempty open set”(ordinary open neighborhood )が、結構重要キーワードじゃないかな?
R中のQのように稠密分散で、
R\Qは、”a nonempty open set”の集まりになるけれども
(似た状況は、上記の「the Lebesgue measure of the sets R \ Cν and R \ Dν is 0, but the four sets Cν, R \ Cν, Dν, and R \ Dν are dense in R.」とある通りで)
「422に書いた定理」の系1.8の背理法証明に使えるような、区間(a, b)が取れると言えるかどうかだ?

以上
179
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/05(金) 00:05:36.46 ID:miqaDy4s(2/12) AAS
>>178 つづき

証明
仮定により,
lim sup y→x |(f(y) − f(x))/(y − x)|< N
を満たす正整数N が取れる.
lim sup y→x |(f(y) − f(x))/(y − x)|= inf δ>0 sup 0<|y−x|<δ |(f(y) − f(x))/(y − x)|
に注意して,
inf δ>0 sup 0<|y−x|<δ |(f(y) − f(x))/(y − x)|< N
ということになるので, あるδ > 0 に対して
sup 0<|y−x|<δ |(f(y) − f(x))/(y − x)|< N
である. 以下, δ > 1/M を満たす正整数M を1 つ取っておく. このとき,
∀y ∈ R [ |y − x| < 1/M → |f(y) − f(x)| <= N|y − x|] ・・・(1)
が成り立つことを示す. |y − x| < 1/M を満たすy ∈ R を任意に取る. もしy = x ならば, 明らか
に|f(y) − f(x)| <= N|y − x| が成り立つ. 以下では, y ≠ x としてよい. よって,
0 < |y − x| < 1/M < δ
となるので, δの定義から,
|(f(y) − f(x))/(y − x)|< N
となる. 特に, |f(y) − f(x)| <= N|y − x| となる. 以上より, (1) が成り立つ. 以上の準備のもとで,
題意を示す. y, z ∈ R であって
x − 1/M < y < x < z < x +1/M
を満たすものを任意に取る. このとき, (1) により
|f(z) − f(y)| <= |f(z) − f(x)| + |f(x) − f(y)| <= N|z − x| + N|x − y| = N(z − y)
が成り立つ(絶対値が外れてN(z − y) になっているのは, y < x < z から出る). よって, 題意が成
り立つ.

つづく
216
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/07(日) 12:04:53.46 ID:2l42E8SE(7/29) AAS
>>215 つづき

https://ja.wikipedia.org/wiki/%E3%83%8F%E3%82%A6%E3%82%B9%E3%83%89%E3%83%AB%E3%83%95%E6%AC%A1%E5%85%83
(抜粋)
ハウスドルフ次元
フラクタル幾何学におけるハウスドルフ次元は、1918年に数学者フェリックス・ハウスドルフが導入した、ハウスドルフ測度が有限な値をとり消えていないという条件に適合する次元の概念の非整数値をとる一般化である。
すなわち、きちんとした数学的定式化のもと、点のハウスドルフ次元は 0、線分のハウスドルフ次元は 1、正方形のハウスドルフ次元は 2、立方体のハウスドルフ次元は 3 である。
つまり、旧来の幾何学で扱われるような、滑らかあるいは有限個の頂点を持つ点集合として定義される図形のハウスドルフ次元は、その位相的な次元に一致する整数である。
しかし同じ定式化のもとで、フラクタルを含めたやや単純さの少ない図形に対してもハウスドルフ次元を計算することが許されるが、その次元は非整数値を取りうる。
大幅な技術的進展がエイブラム・サモイロヴィッチ・ベシコヴィッチによりもたらされて高度に不規則な集合に対する次元の計算が可能となったことから、この次元の概念はハウスドルフ?ベシコヴィッチ次元としても広く知られている。


・可算集合のハウスドルフ次元は 0
・ユークリッド空間 Rn のハウスドルフ次元は n、円 S1 のハウスドルフ次元は1
・フラクタル図形はルベーグ被覆次元を超える。例えば、カントール集合のルベーグ被覆次元は 0 であるが、ハウスドルフ次元は log(2)/log(3) ? 0.63[4]
・シェルピンスキーのギャスケットのハウスドルフ次元は log(3)/log(2) ? 1.58
・ペアノ曲線のような空間充填曲線やシェルピンスキー曲線は充填される空間と同じハウスドルフ次元を持つ
・2次元以上の空間におけるブラウン運動のハウスドルフ次元はほとんど確実に(つまり確率 1 で)2 である[5]

関連項目
・ハウスドルフ次元別フラクタルの一覧: 決定論的フラクタル、確率フラクタル、自然フラクタル…
・アスワド次元: ハウスドルフ次元同様に(球体被覆を用いて)定義されたフラクタル次元
・内在次元
・パッキング次元: ハウスドルフ次元と双対的に、球体充填の定める内測度から定義されたフラクタル次元
・フラクタル次元

(引用終り)
以上
301: 132人目の素数さん [sage] 2018/01/09(火) 10:15:52.46 ID:ebIjgFuJ(3/4) AAS
>>299
記念カキコとして、ヘーヘー。
333: 132人目の素数さん [sage] 2018/01/10(水) 01:59:31.46 ID:JohJXC7c(2/2) AAS
>>329
ダメだなぁ。
342
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/10(水) 11:59:38.46 ID:vsfEZQC9(4/17) AAS
>>341 つづき

>>180より)
”定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間の
上でリプシッツ連続である.”

上記との対応は、Q:R−Bf 、R \ Q:Bf だ
(余談だが、ついでに言うと、>>178の通り (X,O) → (X,d) → (R,d)ってことでしょう )

で、ある開区間(a, b)があって
いまR−BfがQのように、R中に稠密分散しているとする

(a, b)内のQ:R−Bfと 、R \ Q:Bf(無理数)とも、両者”内部も外部もΦ(空)で、境界と閉包はRそのものになる”

R \ Q:Bf(無理数)の部分集合であるリュービル数も、同様に”内部も外部もΦ(空)で、境界と閉包はRそのものになる”(まあ、リュービル数自信R中で稠密で、ルベーグ測度0は知られている)

で、集合としてのリュービル数も、開集合でも閉集合でもないし
非可算集合になるから、1点からなる閉集合では被覆できないことになる

なので、>>313のような”Modifications of Thomae’s function”で、特に急速減少関数では、Qとリュービル数の集合とのみが、” not differentiable”になる
が、ある開区間(a, b)が生じるわけでは、決してない

以上
446
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/13(土) 11:37:38.46 ID:rUYSYDib(7/17) AAS
>>438 補足

pdf:A peculiar connection between the Axiom of Choice and predicting the future THE MATHEMATICAL ASSOCIATION OF AMERICA Monthly February 2008
については、当時哲学者がいろいろ議論したらしい(下記のpdfご参照)
だが、数学者の投稿は見つからなかった!!(^^

そして、過去スレ47にも書いたが、The Mathematics of Coordinated Inference: A Study of Generalized Hat Problems (Developments in Mathematics) 2013 edition by Hardin, Christopher S., Taylor, Alan D. (2013) (>>439
では、上記の未来予測可能とか、任意の関数の値が予測可能とする論は、全部捨てられている

その話も、ちょろっと、まとめPDFに入れて貰えると面白いと思うよ
で、時枝も同じだよ

https://link.springer.com/chapter/10.1007/978-3-319-58507-9_10
Philosophical Aspects of an Alleged Connection Between the Axiom of Choice and Predicting the Future, Pawel Pawlowski First Online: 06 September 2017
Abstract
In 2008 Christopher Hardin and Alan Taylor published an article titled
“Peculiar connection between the axiom of choice and predicting the future” in which they claim that if some system can be described as a function from a set of some instants of time to some set of states,
then there is a way to predict the next value of the function based on its previous input. Using their so-called μμ -strategy one can randomly choose an instant t and the probability that the strategy is correct at t
(i.e. that the output for a strategy for input t is exactly the same as the value of the function) equals 1.
Mathematical aspects of this article are sound, but the background story about the correlation between theorems and philosophical aspects of predicting the future faces certain problems. The goal of my paper is to bring them up.

つづく
486
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/14(日) 17:08:03.46 ID:fNVDpqMq(16/38) AAS
>>485 つづき

5)
http://mathoverflow.net/questions/152787/can-an-infinite-number-of-mathematicians-guess-the-number-in-a-box-with-only-one
Can an infinite number of mathematicians guess the number in a box with only one error? - MathOverflow edited Dec 26 '13 user44653
(抜粋)
In this question*) the following observation was made:
*)上記 Probabilities in a riddle involving axiom of choice - MathOverflow: edited Dec 9 '13 Denis mathoverflow にリンクされている
(引用終り)

これは内容的には無視していいかもしれんが、mathoverflowより時期が早いよね
http://brainden.com/forum/topic/16510-100-mathematicians-100-rooms-and-a-sequence-of-real-numbers/
100 mathematicians, 100 rooms, and a sequence of real numbers Asked by Jrthedawg, July 22, 2013 New Logic/Math Puzzles - BrainDen.com - Brain Teasers
(抜粋)
Question
I am a collector of math and logic puzzles, and this must be the best I've ever seen.

100 rooms each contain countably many boxes labeled with the natural numbers. Inside of each box is a real number.
For any natural number n, all 100 boxes labeled n (one in each room) contain the same real number. In other words, the 100 rooms are identical with respect to the boxes and real numbers.
(引用終り)

以上
524
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/15(月) 07:50:24.46 ID:xsWEHCro(4/7) AAS
>>520
長文は、ほぼ引用コピペだから、それを読むより、URLを開いて読む方がいいだろう
こちらとしては、引用コピペをしておくと、google検索が使えて便利なんだ
606
(1): 132人目の素数さん [sage] 2018/01/20(土) 12:36:34.46 ID:VK9rLWYy(4/6) AAS
>>605
塾や予備校のことはよく知らない。
1年でゼロの状態から東大に受かるのは、ほぼムリ。
大学のお受験はつまらないモノと思っていた方がいい。
630
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/20(土) 23:36:05.46 ID:gQefYikW(17/21) AAS
>>627
>あとは数学板の各スレッドにて適当なキーワードでページ内検索を地道にすれば、サクッと見つけられる。別に難しいことでは無い。

正気か? 「別に難しいことでは無い」だろうが、無価値なことに時間を無駄にしていると、思わないか?
おっちゃんのどこかのスレの発言を、そこまでして・・、おれが見つけなければならないと?(^^

【大学院へ】 30過ぎて、数学の道へ 【挑戦】 第5章
2chスレ:math

いま現在の、google検索結果
1)
”私はあそこのスレ主とは違う。 site:2chスレ:math に一致する情報は見つかりませんでした。”
2)
”ガロアスレのスレ主は他人に成り済ましたりする癖があって、質が悪い site:2chスレ:math に一致する情報は見つかりませんでした。”
(引用終り)

(余談だが、5CHに変わってからかどうか分らないが、googleに疎んじられているようだな・・(^^ )

で、>>620に書いたように、バカ板全体 site:https://rio2016.5ch.net/test/read.cgi/math/ (”30過ぎて”スレでなく)、を対象に検索を掛けてヒットなしだった
で? おれが、いちいちバカ板の全てのスレを開いて検索して回れと? おれが、そこまで他人のつまらん発言の面倒をみなけりゃいかんのかい?(^^

以上
635: 132人目の素数さん [sage] 2018/01/21(日) 00:54:59.46 ID:hREHM7MH(1/15) AAS
新年が明けてまでゴミクズの相手をするのもバカらしいので、正月の三日間くらいは控えようと思っていたら、
ゴミクズ自体のことがどうでもよくなってきて、今日ひさしぶりに閲覧してみた次第である。
そして、ゴミクズのゴミクズ具合は全く変わってないようで何よりである。

以下ではゴミクズに向けて反論を書いていくが、こちらは以前よりやる気がないので、
今後も返答を続けるか否かは気分次第であることを先に注意しておく。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.038s