[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
146(1): 132人目の素数さん [sage] 2018/01/04(木) 10:00:20.33 ID:h0lPBL80(3/11) AAS
実数直線R上におけるルベ−グ測度0の稠密な非可算集合として考えても結果は同じになる。
リウビル数全体の集合の性質に合致する。
253(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/07(日) 22:39:08.33 ID:2l42E8SE(28/29) AAS
>>252
>一次式の係数を無理数にとったら値が有理数にならないことがある、ということのどこが面白いの?
数理女子(>>217)にならって言えば
"有理点が無い場合
実平面の中には有理点がびっしりと詰まっているので、有理点を避けて通る直線なんて無いような気がしてしまうかもしれません。しかし、有理点を持たない直線(1次関数)も、実はいっぱい存在するのです。"
ってこと
なお、下記「この予想は Q を任意の数体へ置き換えた予想へ一般化された」みたいな話は、数学では至る所ある
https://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%83%AB%E3%83%86%E3%82%A3%E3%83%B3%E3%82%B0%E3%82%B9%E3%81%AE%E5%AE%9A%E7%90%86
ファルティングスの定理
(抜粋)
数論では、モーデル予想(Mordell conjecture)は、Mordell (1922) で提出された予想で、有理数体 Q 上に定義された 1 よりも大きな種数を持つ曲線は、有限個の有理点しか持たないであろうという予想である。
後日、この予想は Q を任意の数体へ置き換えた予想へ一般化された。この予想は Gerd Faltings (1983) により証明されたので、ファルティングスの定理(Faltings' theorem)として知られている。
目次
1 背景
2 証明
3 結論
4 一般化
背景
C を Q 上の種数 g の非特異代数曲線とすると、C の有理点の集合は次のように決定することができる。
g = 0 の場合:全く点が存在しないか、もしくは無限個: C は円錐の断面(英語版)である。
g = 1 の場合:全く点が存在しないか、もしくは C が楕円曲線で、有理点が有限生成アーベル群である。(モーデル定理(Mordell's Theorem)は、後日、モーデル・ヴェイユの定理(Mordell?Weil theorem)へ一般化された。さらにメイザーの捩れ定理[1]は捩れ部分群の構造を制限している。)
g > 1 の場合:モーデル予想、現在はファルティングスの定理である。C は有限個の有理点しか持たない。
つづく
347(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/10(水) 13:03:46.33 ID:vsfEZQC9(8/17) AAS
まあ、わかるよ
おっちゃんみてたら
459: 132人目の素数さん [sage] 2018/01/13(土) 15:57:24.33 ID:BB1mEg7b(1) AAS
藁
511: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/14(日) 20:16:24.33 ID:fNVDpqMq(33/38) AAS
>>510 補足
配布プリント(PDF) のリンクは省略した
興味があるなら自分で頼む(^^
656: 132人目の素数さん [] 2018/01/21(日) 11:33:53.33 ID:wjJV20b1(2/2) AAS
>>652
義務も必要も無いなら、何故探した?
最小の労力で確実に成果を出す手段が選べていない時点で甘い。無駄。
「数学板の各スレッドにて適当なキーワードでページ内検索を地道にすれば」
スクリプトにやらせば簡単だろ?
さすがに手動は無いだろ?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.035s