[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
98
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/16(土) 13:28:10.27 ID:/2xvBEHK(18/58) AAS
>>97 つづき

6.で、”可算無限”は本質だな
  例えば、>>81 THEOREM: Let g be continuous and discontinuous on sets of points that are each dense in the reals.
  " In fact, g fails to satisfy a pointwise Lipschitz condition, a pointwise Holder condition, or even any specified pointwise modulus of continuity condition on a co-meager set.
  (Each co-meager set has c points in every interval.)"
  ここで、”on a co-meager set”は、dense(稠密)。(∵ 最初の仮定 ”each dense in the reals”だから)
  co-meagerは、非可算濃度(∵ >>72より 「残留的 (residual, comeagre) であるとは、その補集合 X \ A が痩せていることを言う。」
  「X において第一類 (first category) または痩せている (meagre) とは、それが可算個の疎集合の和になっていることを言う。」)
  (なお>>35 "** f_w is differentiable on a set whose complement has Hausdorff dimension zero. Jurek [4] (pp. 24-25)" も補足しておく。)
7.つまり、かの定理1.7は、ちょうど「”可算無限”リプシッツ”不”連続な点が稠密に分散していることは(数学的に)ありえない」という主張に等価
  (「”非可算無限”リプシッツ”不”連続な点が稠密に分散していることは(数学的に)可能」であるにも拘わらず)

で、私スレ主が、疑問に思うのは、「本当に、それ成り立つのか?」ということ
それを、いま調べているのだ

以上
100: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/16(土) 13:33:29.35 ID:/2xvBEHK(19/58) AAS
>>93-95
つー、>>97-98(^^
110
(12): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/16(土) 14:36:58.33 ID:/2xvBEHK(24/58) AAS
>>98 関連

>>35より、いままでと、重複もあるが、”co-meager”関連引用)
http://mathforum.org/kb/message.jspa?messageID=5432910
Topic: Differentiability of the Ruler Function Dave L. Renfro Posted: Dec 13, 2006 Replies: 3 Last Post: Jan 10, 2007
(抜粋)
Using ruler-like functions that "damp-out" quicker than any power of f gives behavior that one would expect from the above.

Let w:Z+ --> Z+ be an increasing function that eventually majorizes every power function.
Define f_w(x) = 0 for x irrational, f_w(0) = 1, and f_w(p/q) = 1/w(q) where p and q are relatively prime integers.

** f_w is differentiable on a set whose complement has Hausdorff dimension zero. Jurek [4] (pp. 24-25)

Interesting, each of the sets of points where these functions fail to be differentiable is large in the sense of Baire category.

THEOREM: Let g be continuous and discontinuous on sets of points that are each dense in the reals.
Then g fails to have a derivative on a co-meager (residual) set of points.
In fact, g fails to satisfy a pointwise Lipschitz condition, a pointwise Holder condition, or even any specified pointwise modulus of continuity condition on a co-meager set.
(Each co-meager set has c points in every interval.)

つづく
127
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/16(土) 16:21:46.09 ID:/2xvBEHK(36/58) AAS
>>97-98
<いままで読み込んだ調査文献からの暫定結論>

1.>>110 "Let g be continuous and discontinuous on sets of points that are each dense in the reals."
   ↓
  ”g fails to satisfy a pointwise Lipschitz condition, a pointwise Holder condition, or even any specified pointwise modulus of continuity condition on a co-meager set.”
  (Each co-meager set has c points in every interval.)”
  なので、”continuous and discontinuous”&”each dense”は、本質で、これを、”リプシッツ連続とリプシッツ"不"連続”&”each dense”に緩めることはできない
2.その理由は、”continuous and discontinuous”&”each dense”の絡みで、”g fails to satisfy a pointwise Lipschitz condition, a pointwise Holder condition, or even any specified pointwise modulus of continuity condition on a co-meager set."
  が出るのであって、リプシッツ"不"連続に緩めたら、”a pointwise Holder condition, or even any specified pointwise modulus of continuity condition”は言えないだろうということ
  (1と同じことの言い換えみたいだが・・、うまく書けないね(^^ )
3.あと、まだ分らないのが、無理数と有理数に限定した、ruler-like functionsや下記の変形トマエ関数などで、関数の減衰で、無理数での微分可能点が増減するメカニズム
4.あと、”Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }と置く:
  もしR−Bf が内点を持たない閉集合の高々可算和で被覆できる”
  で、R上R−Bfが稠密になる関数が、反例として本当に構成できるかどうか?(可能と思うが・・)
 (R−Bfは、リプシッツ"不"連続であって、通常の不連続とは違うという理解なのだが、それで良いかどうかも、そこがいまいち分らんが・・(^^ )

まあ、もう少し調べるか(^^

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.056s