[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
79
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/16(土) 08:11:35.92 ID:/2xvBEHK(8/58) AAS
>>78 つづき

上記PDFより
(抜粋) (なお、この板では正確に記述できないので、原文PDFをご参照ください)
定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間の
上でリプシッツ連続である.

証明



よって、 f は(a, b) 上でリプシッツ連続である.
(引用終り)

つづく
80
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/16(土) 08:12:02.07 ID:/2xvBEHK(9/58) AAS
>>79 つづき

で、定理1.7 より、>>21
命題B
f:R → R であって、「xがリプシッツ”不”連続な点が加算無限個で稠密に存在し、xがそれ以外でリプシッツ連続」
となるものは存在しない

∵定理1.7より、”f は(a, b) 上でリプシッツ連続である”と、”リプシッツ”不”連続な点が加算無限個で稠密に存在し”とが、両立しないから

で、問題は、
1.命題Bが、いままで誰も発表していない定理なのか?(プロ数学界で)
2.”いままで誰も発表していない定理”だとすると、正しいとすると素晴らしいことだが、一方、命題Bが本当に成立しているのか? ということが問題になる

いろいろ、”リプシッツ連続”について調べているのは、そういうわけです(^^

つづく
89: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/16(土) 12:21:33.78 ID:/2xvBEHK(13/58) AAS
>>87 補足

正直、>>78のPDFは、ざっと読んだが
どこにギャップがあるか、分らなかったし、ギャップを見つける自信がなかった

なので、反例から攻めることにした
PDFの定理1.7(>>79)の証明を読むより、いろいろ自分で調べた文献を読む方が、面白いしね(^^
97
(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/16(土) 13:27:28.54 ID:/2xvBEHK(17/58) AAS
>>79 補足

”定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間の
上でリプシッツ連続である.

よって、 f は(a, b) 上でリプシッツ連続である.”

これで、
1.”内点を持たない閉集合”とは、平たく言えば、「ただ1点」ってことだ
2.”被覆できる”とは、平たく言えば、「和集合」ってことだ
3.で、”高々可算”というけれど、有限なら、「 f は(a, b) 上でリプシッツ連続」はトリビアだ
4.もし、”可算無限”でも、どこかに偏在すれば、当然偏在箇所以外では、「 f は(a, b) 上でリプシッツ連続」もトリビアだ
5.だから、この定理1.7のキモは、「”可算無限”リプシッツ”不”連続な点が稠密に分散していることは(数学的に)ありえない」ということ
 (∵「リプシッツ”不”連続な点が稠密に分散」ならば、”(a, b) 上でリプシッツ連続”と矛盾するから)

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.031s