[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
615
(1): 132人目の素数さん [sage] 2017/12/27(水) 20:30:45.64 ID:hLkm2n+q(2/4) AAS
>>608>>610
>1)の場合
>lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ が、区間(a, b)で成り立っているとする
>区間(a, b)での、|(f(y) − f(x))/(y − x)|の最大値を、Mとする
>|(f(y) − f(x))/(y − x)|<= Mと書ける
>区間(a, b)で、リプシッツ連続である

息をするように間違えるゴミクズ。もしそのような M が取れるなら、
確かに f は(a,b)上でリプシッツ連続となるが、既に述べたように、

「 (a,b) ⊂ B_f を満たす開区間(a,b)が存在する」

という条件からは、

「 f は(a,b)上の 全 体 で リプシッツ連続である」

という条件は導けないので、お前のレスは自動的に間違っており、
そのような M は実際には必ずしも取れないことになる。以下で具体例を挙げる。

f(x)= 0 (x=0), x^{3/2} * sin(1/x) (x≠0)

と置くと、この f:R → R は各点で微分可能なので、特に B_f=R が成り立つ。特に

(−1, 1) ⊂ B_f

が成り立つ。しかし、Af(x) ≦ M (x∈(−1, 1)) が成り立つような定数 M は
取れないことがすぐに分かる。さらに、

「 f は(−1, 1)上の全体でリプシッツ連続である」

という条件も成り立たないことが確認できる。本当にゴミクズだなお前は。
622
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/27(水) 23:20:04.92 ID:JqNELMW3(8/8) AAS
>>615
ふーん、貴方は力があるね(^^
だが、それ自分で”反例”を見つけたことになっていないか?

あなたは、「f(x)= 0 (x=0), x^{3/2} * sin(1/x) (x≠0)」(これを”反例関数”と名付ける)が、(−1, 1) ⊂ B_fだが、”「 f は(−1, 1)上の全体でリプシッツ連続である」という条件も成り立たない”という
おそらく、x=0の近傍でだね

だが、定理の前提の関数fは自由度が高いので(不連続も可だし)、あなたの定理でいう区間(a, b)に、”反例関数”のx=0の近傍を切り取って来て、貼り付ければ、区間(a, b)はリプシッツ連続でなくなるよ。(この貼付操作は、全ての区間に適用できるよ)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.034s