[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 (625レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
571(1): 132人目の素数さん [] 2017/12/26(火) 19:13:34.92 ID:84+rbTu3(1/8) AAS
>>567
>>可算集合の補集合で微分可能→ある開区間で連続
>
>ここを詳しく書くと
>A:稠密可算集合Q(有理数)で不連続で、その補集合(無理数)で微分可能→B:(ある条件を満たせば、必ず(例え補集合が不連続であってかつ稠密であっても))ある開区間で連続(命題Aは”ある条件を満たす”)→矛盾
Qで不連続は不要です
(ある条件)とは?
574(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/12/26(火) 19:47:04.40 ID:IBTJ7HPw(1/13) AAS
>>571
黄金の救急車ですか?(^^
ご苦労さまです(^^
>Qで不連続は不要です
同意です
なお、”不連続”は、もともとは、>>562の「系1.8 有理数の点で不連続、 無理数の点で微分可能となるf : R → R は存在しない」(>>498)に由来しますよ
>(ある条件)とは?
系1.8の証明のキーになる定理で
>>561の定理1.7 (422 に書いた定理)より
”f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば”
が条件です。
なお、定理1.7の結論命題は、「f はある開区間の上でリプシッツ連続である.」(>>561)です。
(なお、この定理1.7 については、>>561に批判のコメントを書いたので、見て頂ければ幸いです)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.035s